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ABSTRACT
We present a novel framework for answering complex questions
that relies on question decomposition. Complex questions are de-
composed by a procedure that operates on a Markov chain, by
following a random walk on a bipartite graph of relations estab-
lished between concepts related to the topic of a complex question
and subquestions derived from topic-relevant passages that mani-
fest these relations. Decomposed questions discovered during this
random walk are then submitted to a state-of-the-art Question An-
swering (Q/A) system in order to retrieve a set of passages that can
later be merged into a comprehensive answer by a Multi-Document
Summarization (MDS) system. In our evaluations, we show that
access to the decompositions generated using this method can sig-
nificantly enhance the relevance and comprehensiveness of summary-
length answers to complex questions.

Categories and Subject Descriptors
H.3.m [INFORMATION STORAGE AND RETRIEVAL]: Mis-
cellaneous; I.2.7 [ARTIFICIAL INTELLIGENCE]: Natural Lan-
guage Processing

General Terms
Algorithms, Performance, Experimentation

Keywords
Question Answering, Summarization

1. INTRODUCTION
Complex questions cannot be answered using the same tech-

niques that apply to “factoid” questions. Complex questions re-
fer to relations between entities or events; they refer to complex
processes and model scenarios that involve deep knowledge of the
topic under investigation. For example, a question like Q0: “What
are the key activities in the research and development phase of cre-
ating new drugs?” looks for information on two distinct phases
of creating drugs. Typically, relevant information for these kinds
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of questions can be found in multiple documents and needs to be
fused together into a final answer. In the Document Understand-
ing Conferences (DUC), the answer to complex questions like Q0

is considered to be a multi-sentence multiple document summary
(MDS) that meets the information need of the question. We intro-
duce a new paradigm for processing complex questions that relies
on a combination of (a) question decompositions (of the complex
question); (b) factoid question answering (Q/A) techniques (to pro-
cess decomposed questions); and (c) multi-document summariza-
tion techniques (to fuse together the answers provided for each de-
composed question). Central to this process is a question decom-
position model that enables the selection of the textual information
aggregated in the final answer.

We present a novel question decomposition procedure that op-
erates on a Markov chain model inspired from the Markov chains
used for expanding language models introduced in [9]. We propose
that question decomposition depends on the successive recognition
(and exploitation) of the relations that exist between words and con-
cepts extracted from topic-relevant sentences. (For the purposes of
this paper, we will define a relation as any semantic property that
can exists between two or more entities or events in texts.) For ex-
ample, if a topic-relation r1 between “develop” and “drugs” is rec-
ognized in question Q0, we assume that this sentence (and all other
sentences containing this particular relation) will contain relevant
information that can be used to decompose of Q0. Furthermore, we
expect that sentences containing topic-relevant relations will also
contain other relevant relations that should be leveraged in question
decomposition. For example, if r1 is identified in the sentence s1

“The challenge for Glaxo was to develop a drug that was pleasant
to swallow.”, we expect that a new relation r2 between the concept
COMPANY (“Glaxo”) and “develop” should be extracted and used
to identify still other sentences that could potentially provide rele-
vant information. As new relations are discovered, we expect that
sentences containing the most relevant relations (or combinations
of relations) can be used to generate questions that can represent
possible decompositions of the original complex question. For ex-
ample, given r1 and r2 in s1, a question like “What companies
develop new drugs?” can be created which could be used to obtain
a set of answers which could represent a partial response to Q0.
Relevant answers to each newly-decomposed question can be used
to discover more relevant relations, that in turn, prompt still more
question decompositions. This process ends when either no new
relations are discovered, or the random walk is stabilizing within a
threshold.

We evaluate question decompositions in three ways. First, we
compare them against decompositions produced by humans. Sec-
ond, we conduct several evaluations of the quality of the MDS an-
swers they enable. Third, we use every sentence from the MDS



Keyword Extraction

Keyword Alternations
and

Signatures
Topic

Processing
Question

Processing
Document

Processing
Answer

Question 1

Question N

Question 2

Sentence 1
Sentence 2

Sentence N

Sentence Ranking

Sentence Ranking

SUMMARIZATION
SYSTEM

DOCUMENT
MULTIPLE

GENERATION
QUESTION

Sentence Retrieval

Complex
Question

Answer
Summary 1

Answer
Summary 2

Answer 1
Answer 2

Answer M

Question Answering System

DECOMPOSITION
QUESTION
SYNTACTIC

Summary 3
Answer

Question 1
Question 2

Question S

DECOMPOSITION
WITH

QUESTION

RANDOM WALKS

QUESTION COMPARISON
AND SELECTION

Documents

Figure 1: The Architecture of our Framework for Processing Complex Questions.

answer and generate questions with the same procedure employed
when creating question decompositions from relevant sentences.
The questions that have answers in the summaries are evaluated
against questions generated by human linguists. They are also used
for measuring the similarity to the decomposed questions. Our
studies indicate that these comparisons correlate with the relevance
of the answers. We claim that this is an important finding since
current MDS evaluation methods typically rely on (a) human pro-
duced answers, or (b) human judgments. The automatic scoring
of the MDS answers based on comparisons of decomposed ques-
tions allows a framework in which researchers can test multiple
Q/A techniques or multiple MDS techniques that best operate for
finding answers.

The remainder of the paper is organized as follows. Section 2
presents the framework we have designed for processing complex
questions. Section 3 details the question decomposition procedure.
Section 4 describes the random walk models employed for decom-
posing questions. Section 5 details the evaluation results while Sec-
tion 6 summarizes the conclusions.

2. PROCESSING COMPLEX QUESTIONS
In this section, we outline three methods for producing answers

to complex questions from based on the output of a question de-
composition system. By decomposing a complex question into a
set of simpler subquestions that each represent a different dimen-
sion of the complex question’s information need, we expect to be
able to identify answers that are both informative and responsive.

In this paper, we introduce a new technique for question decom-
position that uses a random walk in order to generate possible de-
compositions of a complex question. Figure 1 illustrates the system
described in this paper.

Figure 1 includes two types of question decomposition modules:
a syntactic question decomposition module and a random walk-
based question decomposition module. With syntactic question de-
composition, overtly-mentioned subquestions are extracted from a
complex question by separating conjoined phrases and recognizing
embedded questions. While syntactic decomposition is an impor-
tant part of any question decomposition algorithm, we will not be
discussing techniques for this type of decomposition in this paper. 1

1For more information on syntactic decomposition, see [8].

After complex questions are decomposed syntactically, as illus-
trated in Figure 1, keywords are extracted from each sub-question
and are expanded with keyword alternations. The keywords are ex-
panded by (1) identifying the semantic class to which they belong,
and (2) using other terms from the lexicons associated with such
semantic classes. To identify the semantic class, the keyword is
matched against the lexicon of the class. The keyword alternations
are selected from the first 20 scored words from the lexicon. The
semantic classes are acquired off-line with a co-training method
reported in [18].

research: trial, effort, step, study, work, activity, area, business,
cause, field, function, issue, program, project, sector, service, site,
education, information, science

drug: amphetamine, cocaine, ecstasy, epo, heroin, lsd, marijuana,
medication, morphine, opium, measure, prozac, ritalin, steroid, treat-
ment, viagra, alcohol, cost, disease, issue

Figure 2: Keyword Alternations.
Figure 2 illustrates the keyword alternations resulting for the

keywords “research” and “drug” that were extracted from the sub-
question “What are the key activities in the research phase of cre-
ating new drugs?”.

Additionally, we use two different models of topic signatures to
identify (a) the most representative relations for the topic referred
by the complex question and evidence by the document collec-
tion. The first topic signature (TS1) we have implemented was
reported in [10]. TS1 is defined by a set of terms ti, where each
term is highly correlated with the topic with an associated weight
wi: TS1 = {topic〈(t1, w1), (t2, w2), . . . , (tn, wn)〉}. The se-
lection of the terms for TS1 as well as the assignment of the as-
sociation weights is determined by the use of the likelihood ra-
tio. The second topic signature (TS2) was introduced in [3]. It
takes into account the fact that topics are not characterized only
by terms, there are also relations between topic concepts that need
to be identified. If only nouns and verbs from TS1 are selected
as topic concepts, the topic signature TS2 is defined as TS2 =
{topic, 〈(r1, w1), (r2, w2), . . . (rn, wn)〉}, where ri is a binary re-
lation between two topic concepts. The procedure of generating
TS2 was detailed in [3], and it identifies two forms of relations:
(a) syntax-based relations, and (b) salience-based context relations.
The arguments of these relations may be (1) nouns or nominal-
izations; (2) named entity types that a Named Entity Recognizer
(NER) identifies; and (3) verbs.



When topic signatures are available, each sentence from the doc-
ument collection receives a score based on (a) the presence of a
term from TS1; (b) the presence of a relation from TS2; and (c) the
presence of any of the keywords extracted from the sub-question or
their alternations. The sentence scores determine a ranking of the
sentences from the collection for each sub-question. Finally, the
answer is produced by selecting for each decomposition only the
corresponding highest ranked sentences. Redundancy is eliminated
by checking that each new added sentence does not contain any
predicate-argument relation that was already present in a previously
selected sentence. Predicate-argument relations are discovered by
processing sentences with a semantic parser trained on PropBank
[16]. Additionally, each predicate and argument is mapped into ev-
ery WordNet synonym to enable paraphrase identification. In this
way Answer Summary 1 from Figure 1 is produced.

In addition to the method described above, complex questions
can also be decomposed by another method that is described in
Sections 3 and 4. Due to this, in our framework we can produce
two additional answers as summaries. The second form of question
decomposition discovers relations relevant to the complex question
and sentences in which they are present. For each such sentence,
one or multiple questions are generated, representing additional
question decompositions. When these decompositions are ignored
and only the sentences are considered, the topic signatures can be
used to score them and to produce a second answer as summary
(Answer Summary 2 illustrated in Figure 1).

When complex questions are decomposed using random walks,
subquestions are submitted a state-of-the-art question-answering
(Q/A) system (described in [5]), which returns sets of ranked rele-
vant answers for each such decomposition. All these answers are
considered separate documents, which are used to produce a multi-
document summary as the third answer (MDS) (Answer Summary
3 illustrated in Figure 1). The MDS system that was used has been
reported in [7]. Furthermore, for each sentence in the third answer,
we generate one or several questions with the same technique that
is used for decomposing questions with random walks. Since ques-
tions produced from the complex question, and questions produced
from the answer are available, we argue that the answer is relevant
if the two sets of questions are very similar. Question comparison
is produced by a battery of four question similarity measures, pre-
viously reported in [4]. In Section 5 of this paper we detail the
similarity measures we used in the experiments. The selection of
only the most similar questions improves the quality of the answer.
Instead of submitting all questions generated by the random walks,
only the most similar questions are processed again by the Q/A sys-
tem, thus closing a feedback loop. Using a hill-climbing technique,
if the aggregate similarity of the new set of questions derived from
the new answer is improved significantly, the feedback loop starts
again. The aggregate similarity is also described in Section 5 of
this paper.

The feedback loop ends either when new improvements are not
obtained, or when the number of loops is larger than a threshold, in
our case LT = 7. With this framework , we were able to study the
effects of different forms of question decompositions on the quality
of the answers.

3. DECOMPOSING COMPLEX QUESTIONS
In order to process complex questions like Q0: “What are the

key activities in the research and development phase of creating
new drugs?”, current Q/A systems need to decompose the ques-
tion in a series of simpler questions, that can be tackled by the
factoid-based techniques that have emerged from the TREC Q/A
evaluations. Table 1 illustrates some of the questions that represent

decompositions of Q0 and can be generated automatically by the
technique we present in this section.

Q1
0 : What companies develop new drugs?

Q2
0 : What diseases are new drugs being developed for?

Q3
0 : How long does it take to develop a new drug?

Table 1: Examples of Question Decompositions.

The main feature of the decomposed question is related to the
ability to easily detect their expected answer type (EAT), which
represents the semantic class to which their answers should be-
long. For example, the EAT of Q1

0 is ORGANIZATION, the EAT
of Q2

0 is DISEASE, whereas the EAT of Q3
0 is DURATION. Our

main assumption is that the question decomposition model should
be based on several types of relations between words or concepts
used in (a) the complex question, (b) in sentences that contain rele-
vant information for the complex question, or (c) in other question
decompositions that have been produced before for the same com-
plex question.

In order to produce question decompositions, we follow four
steps. In the first step we process the complex question for de-
riving the relations that are meaningful. In the second step we gen-
erate questions based on the relations selected. In the third step
we enhance the meaningful set of relations with relations discov-
ered when generating a question decomposition and then we select
a new relation based on the latest decomposition. In the fourth
step, we loop back to step 2 unless the probability to continue is
not above a certain threshold. The detailed operations in each step
are:

STEP 1: The complex question is lexically, syntactically and se-
mantically analyzed with the goal of identifying the relationships
between words that may lead to the generations of simpler ques-
tions. The three forms of knowledge are marked up in each of the
phases of the analysis:
1.a. (lexical) The determination of the part-of-speech of each word,
generated by the Brill tagger [1].
1.b. (syntactic) A full parse of the question is generated by the
probabilistic parser reported in [2]. The result of the parse renders
information about the syntactic constituents of the question and
about their relations. For example, for the complex question Q0, we
derive the following constituents: V P1: {are}; V P2: {containing};
NP1: {the key activities}; NP2: {the research}; NP3: {development
phase}; NP4: {NP2 and NP3}; NP5: {new drugs}; PP1: {NP4

of NP5}; PP2: {NP1 in PP1}
2.

1.c. (lexical) For each base NP (e.g. NP1, NP2, NP3 , NP5) we
determine whether the head is a nominalization of some verb, by
accessing the WordNet database [12]. For example, the noun “de-
velopment” is a morphological derivation of the verb “develop”.
The NPs having heads which are nominalizations are not consid-
ered in Step 1.d.
1.d. (lexical/semantic) The generality of the heads of each NP is
assessed in one of the two categories: abstract, or concrete. The
assessment is based on a large answer type taxonomy that was de-
veloped for the TREC evaluations of Q/A systems. The taxonomy,
which was described in [17] comprises 440 synsets from WordNet
(and their hyponyms) and 150 semantic classes of names that are
recognized by the Named Entity Recognizers we have available. If
any of the heads of an NP is found in the answer taxonomy, it is
assigned the attribute concrete, otherwise it is labeled abstract. For
the question Q0, only the head of NP5 is categorized as concrete.
NP1 is labeled abstract. The question processing techniques ap-
2NP stands for noun phrase, VP for verb phrase, and PP for prepo-
sitional phrase



plied for factoid Q/A identify NP1 as being the constituent that
indicates the EAT for the question. Since no EAT can be estab-
lished for Q0, it is considered a complex question.
1.e. (syntactic) Relations between concrete NPs and other con-
stituents are sought. The syntactic relationship from the constituent
PP1 indicates a prepositional attachment relation between NP5

and NP4 , which is a coordination between NP2 and NP3. The
syntactic decomposition of the coordination entails two relations
between the verbs related to NP2 and NP3 and NP5. The output
of Step 1 for Q0 is: RELATIONS: {R1 = [develop – new drugs];
R2 = [research – new drugs]}

STEP 2: For a relation discovered at Step 1 we generate ques-
tions that involve that relation. In order to generate questions au-
tomatically, we employ a method that was first reported in [4]. In
order to generate the question, we first find a sentence that consti-
tutes an answer for that question. This is done by the following
sub-steps:
2.a. Query Formulation. In order to find sentences in which el-
ements from the RELATIONS list are discovered, we formulated
two kinds of queries: (a) queries involving the lexical arguments
of the relation, e.g. [“develop” AND “drug”] as well as (b) queries
that involved semantic extensions. Four forms of extensions were
considered: (1) extensions based on the semantic class of names
that represent the nominal category (e.g. names of drugs), (2)
extensions based on verbs which are semantically related to the
verb in the WordNet database (e.g. develop(v) –sem.relation→ cre-
ate(v); develop(v) –sem.relation→ produce(v)); (3) extensions that
allow the nominal to be anaphoric, therefore replaced by a pronoun,
e.g. [develop – it]; and (4) extensions that allow the nominaliza-
tions, as well as the verbal conjuncts, to be considered.

rj shares a predicate with ri rj shares an argument with ri

rj specializes the predicate of ri rj specializes the argument of ri

the predicates of rj and ri can be composed
Table 2: Properties Between Relations ri and rj .

2.b. Sentence Retrieval. We built an index based on the processing
of relations in the text collection3. A sentence is added to the in-
verted list of a relation ri when it may be composed with another
relation rj in the same sentence and (a) relations ri and rj meet
one of the conditions listed in Table 2, or the predicates of relations
ri and rj may be composed with the predicate composition pro-
cedure described as a special case in 2.c; and (b) the argument of
the relation rj can be mapped in one of the EAT categories of the
Q/A system. Examples of such sentences are illustrated in Table 3.
Sentence S1 is retrieved because it contains relation ri = [develop
– drugs] and also a relation rj = [develop – Glaxo] that shares the
same predicate (“develop”) and “Glaxo” is mapped into the EAT
= COMPANY. Similarly, sentences S2, S3, and S4 are retrieved
because they contain three different expansions of ri and new rela-
tions that are compatible with it.
2.c. Question Generation. Every sentence retrieved at 2.b. contains
additional relations, besides those that were expressed by the query.
Among those relations, some share arguments with the queried re-
lations, some do not. The first group of relations may serve to point
to EATs that the decomposed questions should refer to. For ex-
ample, in sentence S1, the new relation [Glaxo – develop] can be
generalized into [ORGANIZATION – develop] in which ORGA-
NIZATION can be selected as the EAT of the question that shall
be generated. Our named entity recognizer (NER) is able to dis-
tinguish between different types of organizations, tagging “Glaxo”
3We process the text collection and discover all syntactic and
salient relations when we build the topic signature TS2 described
in Section 2.

from sentence S1 as COMPANY, and “Medical School” from S2

as UNIVERSITY. When the EAT is established, the question stem
that is associated with it is known (e.g. “what companies”) and
it substitutes the name from the sentence, to generate the question
Q1

0 from Table 1, in which relation R1 is fully specified with all
the argument adjuncts it had in the complex question Q0. Sentence
S1 generates the question Q1

0, whereas sentence S4 generates the
question “What universities develop drugs?”. Sentence S5 illus-
trated in Table 3 enables the generation of Q2

0, whereas sentence
S6 is used for generating Q3

0. Starting from relation R1 in RELA-
TIONS, three new relations are discovered: R1

1 = [[R1 = develop –
drug] – COMPANY], R2

1 = [[R1 = develop – drug] – DISEASE],
and R3

1 = [[R1 = develop – drug] – DURATION]. Each of these
new relations enable the generation of the decomposed questions
listed in Table 1.
S1: The challenge for Glaxo was to develop a drug that was pleasant

to swallow.
S2: The remaining 60 per cent of royalties will be paid to [...] Charing

Cross and Westminster Medical School which developed it.
S3: Few companies admit setting out to create me-too drugs.
S4: Cancer Research funded research and development of the drug

which was originally discovered by Aston University in Birmingham.
S5: At Bristol-Myers, which he left in 1980 to join SmithKline, Crooke

helped develop an array of chemotherapy drugs for cancer patients
that put Bristol at the forefront of cancer treatment.

S6: Since a typical drug takes 10 years and Y10bn to develop, only those
companies large enough to absorb the costs will be able to survive.

Table 3: Sentences retrieved for relation R1: [develop – drug].

3 Special Cases. The properties between relations ri and rj that
are used in the index cover three more cases that need to be ad-
dressed by question generation. They are:
2.c. Argument Specialization. In order to inquire about the at-
tributes of arguments, three forms of questions are generated: (i)
questions that inquire about instances of entities that are referred
by the argument of a relation in which the semantic class of the
argument is the EAT of the question, and the question becomes a
list question; (ii) questions that specialize the argument of the rela-
tion by using a modifier which becomes the EAT of the question;
and (iii) questions that inquire about the characteristics of the ar-
guments by using the question stem “what types”. An example
of the first form of questions is Q6

0: “What new drugs have been
developed?”, generated from the sentence: “Zinnat is a new drug
which was developed because other drugs in its class needed to be
injected and were therefore of little use outside the hospital environ-
ment.”. An example of the second form of questions is Q7

0: “How
many medicines are launched per year?” , in which the EAT is
NUMBER, it modifies the argument “medicines” in sentence “The
number of medicines launched during the early 1980s averaged
about 60 per year.”.

How are new drugs researched?
How are drugs manufactured?
What types of activities are included in the development of new drugs?

Table 4: Questions Based on Predicate Specialization.

2.d. Predicate Specialization. There are three ways of specializing
the predicates from the relations: (i) by selecting the EAT of the
question as a MANNER, and associating the question stem “how”;
(ii) by using adjuncts of the predicates in the question to produce ei-
ther a specialized MANNER EAT or a YES/NO question; and (iii)
by considering that the predicates represent complex events that
have structure, and thus this structure can be inquired by using spe-
cial constructs of the form “what steps are included in”, or “what
types of activities are included in”. The first form of predicate spe-
cialization is the most productive one, and it can be generated based
on the recognition of MANNER relations that was reported in [6].



Examples of questions that were generated for predicate specializa-
tion are listed in Table 4.
2.e. Predicate Composition. Some questions need to capture rela-
tions between predicates. Such relations may be determined by the
discovery of (a) causal relations, as it was reported in [4]; (b) tem-
poral relations; or (c) because the predicates share an argument.
Table 5 illustrates such questions, their type of relations, and the
sentences that enabled them. In our implementation, we have used
a set of cue phrases and causal verbs to detect causal relations be-
tween predicates. For the temporal relations, we relied on the tem-
poral signals annotated in TimeBank (e.g. “before”, “after”, “dur-
ing”).

CAUSAL:
How do trade restrictions affect new drug development?
TEMPORAL:
How many times must a drug be tested before it can be sold?
ARGUMENT SHARING:
How do companies decide which new drugs to research?

Table 5: Questions Based on Relations Between Predicates.
STEP 3: The selection of a new relation is performed after newly

discovered relations are added to the RELATIONS list.
3.a. Relations that specialize arguments or predicates are not added
to RELATIONS, but all the other three types of relations rj are ap-
pended. For example, the relations R1

1 = [[R1 = develop – drug] –
COMPANY], R2

1 = [[R1 = develop – drug] – DISEASE], and R3
1

= [[R1 = develop – drug] – DURATION] are added.
3.b. A new relation is selected to maximize the probability esti-
mation that it will lead to another question decomposition of the
complex question. The probability estimations are detailed in Sec-
tion 4.

STEP 4: The decision to continue or stop the process of gener-
ating question decompositions depends on our formalization of the
process. We have formalized the process of generating question
decompositions which lead to the discovery of new meaningful re-
lations as a random walk on a bipartite graph of questions and re-
lations. For a given relation, a sentence that contains the relation is
selected. That sentence is considered to be the answer to a question
decomposition, which is generated by identifying a new relation,
which in turn, when selected will lead to a new question decom-
position. Thus the random walk continues with a probability α,
generating a new decomposition and selecting a new relation, or it
stops with a probability (1−α). Section 4 describes the formalisms
that allow us to estimate the probability that the random walk ends
after k steps, corresponding to k loops of the Steps 2 and 3 of this
procedure.

4. MARKOV CHAINS FOR QUESTION
DECOMPOSITION

In this section, we describe how we employ two different types
of random walks to decompose complex questions for question-
answering and/or multi-document summarization applications. We
begin by describing how a random walk can be used to populate
a network with potential decompositions of a complex question.
Later, in Section 4.2, we show how another random walk can then
be used to select a set of generated decomposed questions that best
represents the information need of the complex question.

The question decomposition procedure detailed in Section 3 can
be cast as a Markov chain (MC). A MC over a set of states S is
specified by an initial distribution p0(S) over S, and a set of state
transition probabilities p(St|St−1). In the case of question decom-
position, the initial state is represented by one relation r0 selected
from the list RELATIONS (time = 0), which is the set of relations
generated when processing the complex question. The probability

of the initial state is set as 1
n

, where n=|RELATIONS(time = 0)|.
After selecting a relation ri at step i, the index is consulted to
find sentences where ri and other relations rj having the proper-
ties listed in Table 2 are present. If the argument of relation rj can
be categorized in the EAT hierarchy as an expected answer type
ej , then it can enable the generation of a question decomposition
QDi+1 with EAT = ej . The probability that a question decompo-
sition QDi+1, with EAT = ej , is generated from a relation ri is
given by p(QDi+1|ri) = p(ej |ri). The new relation rj is placed
in the RELATIONS list. If the index of ri had only one sentence
and only one relation rj 6= ri could be found in that sentence, then
ri is removed from the list RELATIONS.

A new relation ri+1 is selected from RELATIONS based on the
probability p(ri+1|QDi+1). Since question QDi+1 was generated
based on the EAT discovered with the help of relation rj which led
to the EAT ej , we can evaluate p(ri+1|QDi+1) = p(ri+1|ej). In
this way we have defined the transition probabilities of the Markov
Chain (MC) illustrated in Figure 3. The MC alternates from se-
lecting relations from RELATIONS and generating a new question
decomposition. In this way, the decomposition process is “surfing”
the set of relations meaningful for the complex question, and also
the decomposed questions that are generated based on these rela-
tions. After each step there is some chance that the question de-
composition process will stop. The process continues the random
walk with probability α, generating a new set of question decom-
positions. With probability (1 − α), the walk stops after step k
(after producing the question decomposition QDk+1).

Step 0 Step 1 Step 2

QD1 QD2 QD3

P(QD1|r0)
P(r1|QD1)

P(QD2|r1) P(QD3|r2)
P(r2|QD2)

r0 r1 r2

Figure 3: The Markov chain alternates between relations and
question decompositions.

Since our goal is to estimate the probability that the MC stops af-
ter k steps, we produce a matrix formulation of the problem which
is similar to the formulation reported in [9]. This formulation is
described in Section 4.1. We also want to test our hypothesis that
the decomposed questions are relevant for the complex question.
Since these question decompositions have been generated by re-
lations that we have discovered in the text to be associated with
relations originating in the complex question, we want to test if our
assumption that they are valid decompositions can be quantified by
a measure of relatedness to the complex question. For this purpose,
in Section 4.2 we define a mixture model which generates a dif-
ferent random walk that evaluates the relevance of the decomposed
questions.

4.1 Matrix Formulation
The operation of the random walk can be cleanly described by

using a matrix notation. Let N be the size of the index. The num-
ber N corresponds to the relations that we have discovered in the
text, having the properties that for every relation ri there is also a
relation rj sharing with ri the properties from Table 2, and rj has
the argument mapped in one of the semantic categories of the EAT
classes. Let M be the number of EAT classes. We consider A to be
a N×M stochastic matrix with entries aij = p(ri|ej) representing
the probability that the relation ri will be composed in a sentence
with a relation rj that has an argument of semantic type ej , which
will become the EAT of the question decomposition that is gener-
ated. Similarly, a stochastic matrix B of dimensions M ×N can be
defined, in which the elements bij = p(ei|rj) represent the proba-
bility that a sentence that contains the relation rj can be the answer
to a question with the EAT = ei. Then, the N×N stochastic matrix



C is defined as C = A×B. The probability that the MC stops after
k steps is given by (1 − α)αkCk

r,e, if the last relation it discovered
is r and the last question decompositions it has generated had the
EAT = e.

To estimate p(ei|rj) we consider

p(ei|rj) =
p(rj|ei)p(ei)

P

k
p(rk|ei)p(ei)

where p(ei) is the prior distribution of the semantic type ei in the
corpus, and p(rj |ei) is given by the maximum likelihood estimate
of the relation distribution in the text collection. Let J1 be the
number of instances of the relation rj composed with a relation ri

in the same sentence such that the argument of ri has the semantic
type ei. Then, pmle(rj |ei) = J1

#(instances of rj)

4.2 Random Walks with Mixture Models
Recently, [15] introduced a random walk model for finding an-

swers to complex questions. This model is based on the idea that
answers can be found by scoring each sentence against a complex
question and selecting only the first top-ranked sentences. The sen-
tence rank is produced by a mixture model that combines an ap-
proximation of a sentence’s relevance to a question with similarity
measures that can be used to select answer sentences that are not
similar to one another. Using the same idea, we devised a similar
mixture model for measuring the relevance of a question decom-
position qdi to the complex question cq. The relevance measure is
defined as:

relevance(qdi, cq) = d
sima(qdi, cq)

P

qdj
sima(qdj |cq)

+

+ (1 − d)
X

qdj

simb(qdi, qdj)
P

qdk
simb(qdk, qdj)

The similarities sima and simb are selected from the four simi-
larity measures defined in Section 5. If k is the number of question
decompositions that we consider, a stochastic matrix A of dimen-
sions k × k is considered such that aij = α ∗ relevance(qdi, cq).
In order for matrix a to be stochastic,

P

i
aij = 1, thus α =

1/
Pk

i=1 relevance(qdi, cq). Similarly, a stochastic matrix B of
dimension k × k is defined such that bij = βj ∗ simb(qdi, cq),
where βj = 1/

Pk

i=1 simb(qdi, qdj). Next, the relevance vector
R for all question decompositions is defined by R = [dA + (1 −
d)B]i ×R. The square matrix E = [dA+(1−d)B] defines a MC
where each element eij from E specifies the transition probability
from state i to state j in the corresponding Markov Chain. The rel-
evance vector R is the stationary distribution of the Markov chain.
With probability d, a transition is made from the current question
decomposition qdi to new question decompositions that are similar
to the complex question cq. With a probability (1 − d), a transi-
tion is made to question decompositions that are similar to the last
question generated, qdi. We have used several values for d in our
experiments.

5. EVALUATION RESULTS
Our experiments have targeted (1) the evaluation of the decom-

posed questions; (2) the evaluation of the three forms of answers
produced by the framework illustrated in Figure 1; and (3) the eval-
uation of the impact of the decomposed questions on the quality of
answer summaries.

Evaluation of Decomposed Questions
The evaluation of the decomposed questions was performed in

two ways. First, the decomposed questions were evaluated against

decompositions created by humans. Second, question decomposi-
tions were evaluated against questions generated from the answer
summaries. The second evaluation was also compared against an
evaluation involving only human-generated questions, both from
the complex question and from the answer summaries. The evalua-
tion was performed against 8 complex questions that were asked as
part of the DUC 2005 question-directed summarization task. The
questions correspond to the topics listed in Table 6.

Four human annotators performed manual question decomposi-
tion based solely on the complex questions themselves. Annotators
were asked to decompose each complex question into the set of
subquestions they felt needed to be answered in order to assemble
a satisfactory answer to the question. (For ease of reference, we
will refer to this set of question decompositions as QDhuman.)

In order to evaluate the quality of the automatic question de-
compositions produced by our system, we generated three different
types of question decompositions for a total of 8 complex ques-
tions that were asked as part of the 2005 DUC question-directed
summarization task. First, we had 4 human annotators perform
manual question decomposition based solely on the complex ques-
tions themselves. Annotators were asked to decompose each com-
plex question into the set of subquestions they felt needed to be an-
swered in order to assemble a satisfactory answer to the question.
(For ease of reference, we will refer to this set of question decom-
positions as QDhuman.) The subquestions generated by the anno-
tators were then compiled into a ”pyramid” structure similar to the
ones proposed in (Nenkova and Passonneau, 2004). In order to cre-
ate pyramids, humans first identified subquestions that sought the
same information (or were reasonable paraphrases of each other)
and then assigned each unique question a score equal to the num-
ber of times it appeared in the question decompositions produced
by all annotators. Second, we utilized our random walk model to
generate a set of question decompositions (QDauto1) for each com-
plex questions. Third, as shown in Figure 1, the subquestions in
QDauto1 were used to generate multi-document summaries which
were used to automatically generate a fourth set of question de-
compositions (QDauto2). As with QDhuman, the subquestions
generated for QDauto1 and QDauto2 were combined into pyramid
structures by human annotators.

Each of these three sets of question decompositions were then
compared against a set of ”gold standard” decompositions created
by another team of 4 human annotators from from the 4 ”model
summaries” prepared by NIST annotators as ”gold standard” an-
swers to the 8 complex questions. Each of the three question de-
compositions described above (i.e. QDhuman, QDauto1, and
QDauto2) were then scored against the corresponding ”model” ques-
tion decomposition pyramid using the technique outlined in [14].
Table 6 illustrates the Pyramid coverage for QDauto1, QDauto2,
and QDhuman It is to be noted that although the QDhuman cap-
tured 45% of the questions contained in the ”model” pyramids, the
high average Pyramid score (0.5000) suggests that human question
decompositions typically included questions that corresponded to
the most vital information identified by the authors of the ”model”
summaries.

Another important observation is that the coverage and the Pyra-
mid score of QDauto2 are almost 80% of the same measures ob-
tained for QDhuman, whereas the Pyramid score of the question
decompositions QDauto1 is only 45% of the Pyramid score and
coverage obtained for QDhuman. In fact, these scores vary based
on the number of feedback loops allowed for the Answer Summary
3 from Figure 1. Figure 5 illustrates the average average Pyra-
mid scores that were obtained at each step of the feedback loop for
all eight questions, both for QDauto1, and QDauto2. The Figure



Topic Pyramid Score for Question Decompositions
Description QDauto1 QDauto2 QDhuman

Falkland Islands 0.2012 0.3202 0.3889
Tourist Attacks 0.2317 0.3745 0.5000
Drug Development 0.3114 0.5195 0.6744
Amazon Rainforest 0.2500 0.4091 0.6000
Welsh Government 0.2931 0.4873 0.5091
Robot Technology 0.2268 0.4421 0.6222
U.K. Tourism 0.0196 0.3917 0.4035
Czechoslovakia 0.2301 0.3116 0.3836

AVERAGE 0.2205 0.4070 0.5000

Table 6: Pyramid Coverage of Question Decompositions.

shows that the Pyramid scores improve for QDauto1. The improve-
ment for QDauto2 is less dramatic. This means that the compari-
son and selection of new question decompositions at each feedback
loop determines better questions and better answers.

Topic Responsiveness Score
Description Summary 1 Summary 2 Summary 3 Human Sum

Falkland Islands 3.75 4.00 4.00 4.50
Tourist Attacks 2.75 3.00 3.25 4.75
Drug Development 2.00 2.75 3.00 4.50
Amazon Rainforest 3.00 3.25 4.00 4.75
Welsh Government 3.75 4.00 3.75 5.00
Robot Technology 3.00 3.50 4.00 4.50
U.K. Tourism 3.75 4.00 4.25 4.25
Czechoslovakia 2.25 3.00 4.00 4.50

AVERAGE 3.03 3.44 3.72 4.59

Table 7: Responsiveness Score for the Human Summaries and
Answer Summaries 1, 2 and 3.

Four different similarity metrics are responsible for the compar-
isons. They are listed in Figure 4. Pairs of these similarity metrics
were also used for defining the relevance of question decomposi-
tions to each complex question. The aggregate similarity between
qi ∈ QDauto1 and QDauto2 is defined as A−sim(qi, QDauto2) =
1
7

P7
j=1 simj(qi, QDauto2). The similarity scores play an impor-

tant role in the selections of questions from QDauto1 for the next
loop. In our experiments, we observed that if we take only similar-
ity 3 we obtain the best results.

Similarity Metric 1 weights content terms in QDauto1 and QDauto2 us-
ing tfidf (wi = w(ti) = (1 + log(tfi))

log N
dfi

), where N is the
number of questions in QDauto1 and QDauto2 , while dfi is equal to
the number of questions in containing ti and tfi is the number of times
ti appears in QDauto1 and QDauto2 . Any question in QDauto1 and
QDauto2 can be transformed into two vectors, vq = 〈wq1 , wq2 , ..., wqm 〉
and vu = 〈wu1 , wu2 , ..., wun〉; The similarity between QDauto1 and
QDauto2 is measured as the cosine measure between their corresponding vec-
tors:: cos(vq , vu) = (

P

i wqi
wui

)/((
P

i w2
qi

)
1
2 × (

P

i w2
ui

)
1
2 ).

Similarity Metric 2 is based on the percent of terms in QDauto1 that appear in
the QDauto2 . It is obtained by finding the intersection of the terms in the term
vectors of the two questions.

Similarity Metric 3 utilizes semantic information from WordNet. It involves:
(a) finding the minimum path between WordNet concepts. Given two terms t1
and t2, each with n and m WordNet senses S1 = {s1, ..., sn} and S2 =
{r1, ..., rm}. The semantic distance between the terms δ(t1, t2) is defined by
the minimum of all the possible pair-wise semantic distances between S1 and S2:
δ(t1, t2) = minsi∈S1,rj∈S2 D(si, rj), where D(si, rj) is the path length
between si and rj .
(b) The semantic similarity between the vector transformations vq and vu

from QDauto1 and QDauto2 respectively is defined as sem(vq , vu) =
I(vq,vu)+I(vu,vq)

|vq |+|vu|
, where I(vx, vy) =

P

x∈vx

1
1+miny∈vy δ(x,y)

Similarity Metric 4 is based on question type similarity, using a question-type
similarity matrix similar to the one introduced in [11].

Figure 4: The four similarity metrics.
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Figure 5: Pyramid scores at each step of the feedback loop.

Evaluation of Answers.
Answers were evaluated by the “responsiveness score” designed

by the NIST assessors. The score provides a coarse ranking of
the summaries for each topic, according to the amount of informa-
tion in the summary that helps to satisfy the information need ex-
pressed in the topic statement. Four linguist assigned these scores
for all three forms of answer summaries. Table 7 illustrates the re-
sponsiveness scores for Answer Summary 1, Answer Summary 2,
Answer Summary 3, from Figure 1 and the human generated sum-
maries. The responsiveness score is measured on a scale from 1 to
5 and it quantifies how well does a summary answer the complex
question. A score of 1 is the least responsive to the question. A
score of 5 means that the summary answers completely the ques-
tion.

Evaluation of the Impact of the Decomposed Questions on
Answer Summaries.

We were also interested to evaluate the impact the question de-
compositions would have when we select different values for the
parameter α which stops the Markov chain. Figure 6 illustrates the
average Responsiveness score obtained when α = 0.85, α = 0.6,
α = 0.5, α = 0.3 and α = 0.15. Since the question decom-
positions determine two different answers, as it was illustrated in
Figure 1, we have measured the responsiveness for both of them
and illustrate the results in Figure 6.
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Figure 6: Responsiveness for different α values.

In a separate effort, we evaluated the impact of only the ques-
tion decompositions that were considered relevant to the complex
question by the random walk presented in Section 4.2. Since that
random walk depends on the parameter d, we have tested the ques-
tion coverage for d = 0.85, d = 0.6, d = 0.5, d = 0.3, and
d = 0.15. Figure 7 illustrates the average Responsiveness obtained



in this case. Since only Answer Summary 3 is obtained by con-
sidering the relevance of question decompositions to the complex
question, unlike Figure 6, in Figure 7 we illustrate results only for
Answer Summary 3. The best results are obtained for d = 0.85.
This result supports our intuition that the question decompositions
should not be necessarily very different, but they must be relevant
to the complex question. The difference from the responsiveness
of human-generated summaries indicates that relevance takes into
account more sophisticated information than the one contained in
questions.
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Figure 7: Responsiveness for different d values.

6. CONCLUSIONS
We have presented a new framework for question decomposition

that allows several forms of answers to be returned for complex
questions. Two forms of random walks were used. The first ran-
dom walk was used for surfing the space of relations relevant to the
complex question, in order to generate question decompositions.
The second random walk was used for measuring the relevance of
the question decompositions to the complex question.

The evaluations have shown that the question decompositions
lead to more relevant and complete answers. The results have also
shown that the coverage of automatically generated question de-
compositions, when compared with the questions generated from
the answer summary are better indicators of answer quality than
the relevance score to the complex question. The evaluations have
also indicated the question coverage for automatic methods is 85%
of the coverage of questions produced by humans.

In this paper we have also described a Q/A architecture which
allows feedback loops for improving the quality of answers through
the coverage of question decompositions.
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