
Question Answering with LCC’s CHAUCER-2 at TREC 2007

Andrew Hickl, Kirk Roberts, Bryan Rink, Jeremy Bensley, Tobias Jungen, Ying Shi, and John Williams
(DRAFT)

Language Computer Corporation
1701 North Collins Boulevard

Richardson, Texas 75080
andy@languagecomputer.com

Abstract

In TREC 2007, Language Computer Corporation ex-
plored how a new, semantically-rich framework for in-
formation retrieval could be used to boost the overall
performance of the answer extraction and answer selec-
tion components featured in its CHAUCER-2 automatic
question-answering (Q/A) system. By replacing the tra-
ditional keyword-based retrieval system used in (Hickl
et al. 2006c) with a new indexing and retrieval engine
capable of retrieving documents or passages based on
the distribution of named entities or semantic dependen-
cies, we were able to dramatically enhance CHAUCER-
2’s overall accuracy, while significantly reducing the
number of of candidate answers that were considered by
its Answer Ranking and Answer Validation modules.

1. Introduction
In TREC 2007, Language Computer Corporation explored
how a new, semantically-rich framework for information re-
trieval could be used to boost the overall performance of the
answer extraction and answer selection components featured
in its CHAUCER-2 automatic question-answering (Q/A) sys-
tem.

Unlike the keyword-based retrieval systems traditionally
used by Q/A systems, CHAUCER-2 leverages a novel in-
dexing and retrieval engine which makes it possible to re-
trieve documents or passages using queries that look for
instances of (1) entity types recognized by a named entity
recognition (NER) system, (2) semantic dependencies iden-
tified by PropBank- or NomBank-based semantic parsers,
(3) semantic frames (or frame-denoting elements) recog-
nized by a FrameNet parser, or even (4) the normalized ver-
sions of temporal or spatial expressions. Support for these
new types of queries dramatically enhanced the performance
of CHAUCER-2’s Document and Passage Retrieval compo-
nents while significantly reducing the number of candidate
answers that had to be considered by its Answer Ranking
and Answer Validation modules.

CHAUCER-2 also leverages a variant of the Bindings
Engine (BE) first proposed by (Cafarella et al. 2005;
Cafarella & Etzioni 2005) in order to retrieve of all of
the text snippets matched by a pattern-based (or variabi-
lized) query without having to retrieve documents using a
keyword-based query. We found that use of this framework

greatly both enhanced the efficiency and the recall of tradi-
tional pattern-based approaches to Q/A and allowed for the
development of new libraries of precise patterns for specific
question types asked in previous TREC QA evaluations.

Finally, CHAUCER-2 incorporates a new, multi-tiered An-
swer Type Detection (ATD) module which reduces the num-
ber of expected answer types (EATs) considered by the
system for factoid or list questions, while maintaining the
same high levels of precision exhibited by previous systems.
Since LCC’s previous ATD systems often identified a large
number of spurious answer types along with the most cor-
rect answer type for a question, we developed a new back-
off mechanism which forces the Q/A system to consider the
most specific EATs identified for a question first; other, more
general EATs were then included as search terms only when
insufficient evidence was retrieved using the more specific
EAT.

Taken together, we believe these three enhancements to
CHAUCER-2’s core retrieval capabilities allowed us to de-
velop a battery of high-precision, low-recall Answer Re-
trieval strategies which could be run independently of the
traditional entity-based Q/A strategies currently being used
by LCC’s FERRET (Hickl et al. 2006a) and CHAUCER-
1 (Hickl et al. 2006c) question-answering systems. In or-
der to maximize the value of these individual strategies, we
re-cast the new CHAUCER-2 Q/A pipeline developed for the
TREC 2007 evaluations as a cascade of end-to-end Q/A sys-
tems which were tasked with answering questions in order
of their expected precision for a particular question type.

The rest of this paper is organized in the following way.
Section 2 presents a brief overview of the architecture of
the CHAUCER-2 system. Section 3 presents details of
CHAUCER-2’s core factoid Q/As system, while Section 4
describes the system for answering list questions, and Sec-
tion 5 describes the techniques used to answer “other” ques-
tions. Results from this year’s official evaluation are dis-
cussed in Section 6, while Section 7 summarizes our con-
clusions.

2. The CHAUCER-2 Question-Answering
System

This section describes the architecture of the CHAUCER-2
question-answering system used to answer factoid and list



questions for the TREC 2007 QA Track Main Task. The
architecture of CHAUCER-2 is presented in Figure 1.

Target Processing
Targets in CHAUCER-2 are initially submitted to a Target
Type Classification module which uses a version of the Max-
imum Entropy-based classifier introduced in (Hickl et al.
2006c) in order to categorize series targets into one of a
set of semantic categories taken from the large ontology of
semantic types recognized by LCC’s CICEROLITE named
entity recognition system. As with our TREC 2006 work,
targets were classified into one of six target types, includ-
ing: (1) PEOPLE (e.g. Warren Moon), (2) ORGANIZATIONS
(American Enterprise Institute), (3) LOCATIONS (Amazon
River), (4) EVENTS (1991 eruption of Mount Pinatubo),
(5) AUTHORED WORK (The Daily Show), or (6) GENERIC
NOUNS (avocados).

Classified targets were then sent to a Discovery of Essen-
tial Information module which leveraged sets of event, at-
tribute, and relationship extractors created prior to the TREC
2007 evaluations for each individual target type category us-
ing LCC’s CICEROCUSTOM open-domain, customizable in-
formation extraction system. In addition to these sets of
custom extractors, CHAUCER-2 also used sets of heuris-
tics in order to extract information related to targets from
a number of “authoritative sources” available on the WWW,
including imdb.com, nndb.com, iplpotus.com, s9.com, and
wikipedia.org. Once each of these four extraction strategies
were run for an individual target, output was then cast in a
structured form and stored in a database (referred to as the
Factoid Database).

In order to ensure that the Factoid Database contained
a minimum of contradictory and/or redundant information,
all new information added to the database was first sent
to a Content Validation module, which followed (Hickl &
Harabagiu 2007) in using the output of systems for recogniz-
ing textual entailment (Hickl & Bensley 2007) and textual
contradiction (Harabagiu, Hickl, & Lacatusu 2006) in order
to determine when newly-discovered facts could be either
inferred from – or were directly contradicted by – knowl-
edge already stored in the database.

Once the Factoid Database was populated for each target,
a select set database fields were then sent to a QUAB Gen-
eration module in order to generate sets of question-answer
pairs which could be used by CHAUCER-2’s other down-
stream Answer Selection and Answer Validation modules.

Question Processing
Following Target Processing, each question in a series was
then sent to a series of Question Processing modules which
annotated individual questions with the lexico-semantic in-
formation needed to generate queries for each of the individ-
ual Answer Retrieval strategies employed by CHAUCER-2.

As with our TREC 2006 system, questions were initially
sent to a Question Annotation module which (1) identi-
fied token and collocation boundaries, performed (2) part-
of-speech tagging and (3) named entity annotation (using
LCC’s CICEROLITE named entity recognition system), and

(4) resolved instances of pronominal and nominal corefer-
ence (using the knowledge-lean, heuristic approach first in-
troduced in (Hickl et al. 2006c)). Questions were then sent
to a Semantic Parsing module, which identified semantic de-
pendencies using LCC’s own PropBank-, NomBank-, and
FrameNet-based semantic parsers.

Factoid and list questions were then sent to a new Answer
Type Detection module which followed (Li & Roth 2002)
and (Chakrabarti, Krishnan, & Das 2005) in using a multi-
ple Maximum Entropy-based classifiers in order to identify
the expected answer type (EAT) of the question from LCC’s
answer type hierarchy.

Once annotation and answer type detection were com-
plete, CHAUCER-2 sent questions to a Query Formulation
module responsible for (1) extracting keywords and phrases,
(2) identifying synonymous terms that could be used to aug-
ment a query, and (3) transforming questions into the partic-
ular kinds of queries required by each of the system’s An-
swer Retrieval strategies.

Document Preprocessing and Retrieval
CHAUCER-2 employed the same document preprocessing
framework introduced in (Hickl et al. 2006c). As with our
TREC 2006 submission, we preprocessed the AQUAINT
corpus with four types of information. First, we used an
in-house implementation of the Collins parser to provide a
full syntactic parse of every document in the AQUAINT-2
corpus; documents in the larger (and “noisier”) BLOG-06
corpus were parsed using an in-house chunk parser. Sec-
ond, we used three different semantic parsers in order to
identify semantic dependencies imposed by both verbal and
nominalized predicates. In addition to LCC’s PropBank and
NomBank parsers, we also used LCC’s FrameNet-based se-
mantic parser to identify instances FrameNet frames in nat-
ural language texts; a separate role classifier was used to
identify roles associated each FrameNet frame.1 Third, we
used LCC’s CICEROLITE named entity recognition system
in order to classify more than 300 different types of names
found in the corpus. We also used more than 500 lexicons
and gazetteers derived from web-based resources in order
to tag additional name types not covered by CICEROLITE.
Finally, we used LCC’s PINPOINT temporal normalization
system (Lehmann et al. 2005) in order to map temporal ex-
pressions found in documents to a standardized (ISO 8601)
format.

Following annotation, we indexed the AQUAINT-2 and
BLOG-06 corpora using a customized version of the Lucene
information retrieval engine. In addition to retrieving docu-
ments (and passages) based on literal strings and stemmed
words, CHAUCER-2 was able also retrieve documents based
on a wide range of semantic annotations made available by
LCC’s annotation components, including (1) entity types
from LCC’s CICEROLITE, (2) predicate-argument relation-
ships from LCC’s PropBank and NomBank parsers, (3) se-

1The AQUAINT-2 corpus was processed using semantic parsers
which had been previously trained on data that had been fully
parsed; documents in the BLOG-06 corpus were processed using
parsers that had been trained on the output of a chunk parser.



����� �����	��
��
����� ������� � � ������� �
�

���������
����� ������� � � �

! � ��� � " #��$�
����� ������� � ���

%���� ��� � � �
������������� � ���

! #�� &���� � � ��� � ���
' � #��������

(������ ��� )+*,��� ��"
���-�

�
�
�
�����
�	.���� � )���� � �
�

����� �����	��
��
����� ������� � � ������� �
�

���������
����� ������� � � �

! � ��� � " #��$�
����� ������� � ���

%���� ��� � � �
������������� � ���

! #�� &���� � � ��� � ���
' � #��������

���������
����� ������� � � �

! � ��� � " #��$�
����� ������� � ���

%���� ��� � � �
������������� � ���

! #�� &���� � � ��� � ���
' � #��������

(������ ��� )+*,��� ��"
���-�

�
�
�
�����
�	.���� � )���� � �
�

' ����� ���/����� �����
021
043
5
��

6 #����-� � ���
! �����
� ��� � ��� ������! ��* 	
��! ��*������! ��* 	
��! ��*

' ��78���
� � �
9
��� �-� ���

6 #�����
:(�� ��72#�� ��� � �
� ' � ����� ����� ���

; ��� ��&
"
� ��&��
��)
< ��)���� */� ��#�78��� �

%���� �$� �������

9������������
%���� �$� �������

! ����=>���?����� �$����� � �
�

! ���-=>���?%�����@�� ���

A ��"�9
�����
% ��� ��� �������

9
�����B�����
% ��� �$� �������

' ��� #���� # � ��)
*,��� �

! ����=C��� ' ��� ������� �
�+���
)+.	��� � )���� � �
�
��D 3

5DFE

��D 3

5DFE

6:G,!?H4I ������� ��� � �
�

��
�������� �< �
)����

� 
�
���
�< ��)����

� � �J ��� �>K,L�L
M
N O�P

9
� � � H ����@
; � 7 H ����@

(�����78� ; �
������
������
��

���� ���

������� #����
�
�
��������)
� ����� � �

������� #
���
����� ��� � 74�
���

Q>R�S-T O�U�V�W�X�OCY/O�Z O�[-Z \ L R

Figure 1: Architecture of the CHAUCER-2 Question-Answering System

mantic frames, frame roles, and frame-denoting elements
recognized by LCC’s FrameNet parser, or (4) any of the
events, attributes, or relations extracted by LCC’s CICERO-
CUSTOM.

Answer Retrieval and Extraction
CHAUCER-2 leverages a cascade of three separate factoid
Answer Retrieval and Extraction strategies in order to iden-
tify the best answer to each question in a series. Strate-
gies developed for this year’s TREC include: (1) a Struc-
tured Data strategy which identifies answers from the in-
formation stored in the Factoid Database, (2) a Pattern-
based strategy which leverages a variant of the Bindings
Engine (BE) first proposed by (Cafarella & Etzioni 2005;
Cafarella et al. 2005) in order to retrieve all of the text snip-
pets matched by a pattern-based query, and (3) a traditional
Entity-based strategy identifies candidate answers based on
the distribution of entity types associated with an expected
answer type. (Details of each of these three strategies are
presented in Section 3.)

Although previous versions of CHAUCER (Harabagiu et
al. 2005; Hickl et al. 2006c) have sought to identify likely
candidate answers by combining the output of multiple Q/A
strategies, CHAUCER-2 considers answers returned by its
four Q/A engines in a fixed order. If no answers are re-
turned by the Structured Data strategy, then questions are
sent to the Neighborhood-based strategy; likewise, if no an-
swers above a fixed confidence threshold are returned by the
Neighborhood-based strategy, CHAUCER-2 defaults to us-
ing the Entity-based strategy in order to find answers.

Answer Validation
As with our TREC 2006 submission, CHAUCER-2 employs
a Answer Selection and Validation module in order to iden-
tify the best answer when multiple candidate answers are re-

turned by one (or more) Answer Extraction strategies. Fol-
lowing Answer Extraction, the top five candidate answers
identified by each strategy are then sent to a Candidate An-
swer Re-ranking module which uses a Maximum Entropy-
based re-ranker (based on (Ravichandran, Hovy, & Och
2003) in order to provide a single ranked list of candidate an-
swers for a particular question. The re-ranked list of answers
were then sent to a final Answer Selection module which
uses the state-of-the-art textual entailment system described
in (Hickl & Bensley 2007) in order to identify the single an-
swer passage whose meaning is most likely to be entailed by
the meaning of the original question.

3. Answering Factoid Questions
In this section, we describe the CHAUCER-2 system for an-
swering factoid questions.

Question Processing
This section describes how questions were processed in
CHAUCER-2.

Keyword Expansion As with the TREC 2006 version of
CHAUCER, keywords extracted from each question were
processed by a Keyword Expansion module that was de-
signed to identify additional synonymous keywords that
could be used to augment the query CHAUCER-2 used to
retrieve documents. This module used a set of heuristics
in order to append synonyms and alternate keywords from
a database of similar terms developed by LCC for previous
TREC QA evaluations.

Question Coreference We incorporated a heuristic-based
Question Coreference module in order to resolve referring
expressions found in the question series to antecedents men-
tioned in previous questions or in the target description.
First, we used heuristics for performing name aliasing and



nominal coreference from CICEROLITE in order to iden-
tify the full referent for each partial name mention found
in the question series. Next, we constructed an antecedent
list from all of the named entities that occurred in the ques-
tion series prior to the current question. Each potential an-
tecedent and referring expression found in the series were
then annotated with name class, gender, and number in-
formation available from CICEROLITE. We then used the
Hobbs Algorithm (Hobbs 1978) in order to match referring
expressions to candidate antecedents. When no compatible
antecedent could be identified from the antecedent list, we
made no further attempt to resolve the referring expression
found in the question.

Answer Type Detection CHAUCER-2 follows recent
work in Answer Type Detection (Li & Roth 2002;
Chakrabarti, Krishnan, & Das 2005; Hickl et al. 2006c)
(ATD) in using a multi-tiered classification approach to the
recognition of the Expected Answer Type (EAT) of both fac-
toid and list questions. Under our current approach, we use
a three-stage approach to identifying the expected answer
type of a question. First, questions are submitted to a coarse
type ATD classifier which uses an variant of the Maximum
Entropy-based classifier first introduced in (Harabagiu et al.
2005) in order to associate each question with one of a set of
11 coarse types. (The complete list of coarse types that were
used in TREC 2007 are listed in Table 1.) Second, ques-
tions of certain selected answer types are submitted to a sec-
ond, expanded coarse type classifier which identifies a sec-
ond coarse-grained answer type which can be used to further
describe the type of answer sought by the question. (The set
of expanded coarse types we considered in our TREC 2007
work are presented in Table 2.) Finally, questions of each
coarse type (or sub-type) are then submitted to a third set of
fine type classifiers which map each question to one of the
set of fine answer types associated with each coarse type.
In our work, we have used a hierarchy of over 275 different
fine entity types derivable from the more than 300 different
entity types recognized by LCC’s CICEROLITE. (Table 3
presents a sample of some of the fine types that were used in
CHAUCER-2.)

Coarse Type Example(s)

HUMAN George W. Bush, Texans, State Department

LOCATION Tajikistan, Grand Canyon, Sears Tower

ABBREVIATION AARP, Dr.

WORK Hamlet, Guernica

NUMERIC 55mph, £124

TEMPORAL 1945, 8 years ago

TITLE Physician, Israeli

CONTACT-INFO andy@languagecomputer.com

OTHER-ENTITY Hurricane Andrew, Budweiser

OTHER-VALUE purple, guilty

COMPLEX –

Table 1: Coarse Answer Types used by CHAUCER-2

In our TREC 2007 work, we have found that CHAUCER-
2’s approach to Answer Type Detection hinges on the recog-
nition of three core elements from each question: (1) the

Coarse Type Expanded Coarse Type Example(s)

INDIVIDUAL Bill Clinton, Paul McStay

HUMAN GROUP journalists, Floridians

ORGANIZATION FBI, The White Stripes

FACILITY MacDill AFB, Hoover Dam

LOCATION GPE India, Los Angeles

PHYSICAL LOCATION Great Plains, Blue Nile

Table 2: Breakdown of HUMAN and LOCATION Coarse An-
swer Types into Expanded Coarse Types

Coarse Type Fine Types

FACILITY CASINO, MUSEUM

GPE CITY, COUNTRY, STATE

INDIVIDUAL ACTOR, BASEBALL-PLAYER, MILITARY-PERSON

ORGANIZATION COMPANY, UNIVERSITY, BASEBALL-TEAM

PHYSICAL LOCATION ISLAND, PLANET, RIVER

WORK ALBUM, SONG, BOOK

Table 3: Examples of CHAUCER-2’s Fine Answer Types.

question stem, (2) the predicate answer type term, and (3)
the nominal answer type term.

We define a question stem as the word (or phrase) which
signals the broadest type of information sought by the ques-
tion. With most interrogatives, the question stem is equiv-
alent to a WH-word (e.g. who, what how) or a WH-phrase
(e.g. how many, what book and can be extracted heuristically
from the text of a question.2 We consider a question’s pred-
icate answer type term (or predicate ATT) to be any verbal
predicate (or predicate nominal) which exhibits a semantic
dependency with a question stem. For example, in a ques-
tion like “What civilization built the pyramids that towered
over the Nile River?”, the words built and towered are both
predicates, but only the predicate built has selects the ques-
tion stem What nation as an argument. In contrast, we define
the nominal answer type term (or nominal ATT) as the noun
phrase (NP) in a question that can lead to the inference of a
question’s expected answer type (EAT). For example, in the
questions What country is Ahmadinejad president of? and
What is Jon Bon Jovi’s profession?, we assume that words
such as country and profession can be used to infer an the
most appropriate answer type for these questions.

In CHAUCER-2, recognition of the question stem, predi-
cate ATT, and nominal ATT were performed using a heuris-
tic based method that was tuned on a collection of more than
6000 factoid questions which had been annotated with these
three core elements.

Evaluation results for nominal ATT detection are listed in
Table 4. CHAUCER-2 is least accurate on question stems
that need no nominal ATT, such as who, when, and where.
However, since these questions already derive much mean-
ing from their stems, the downstream performance is not
significantly damaged. On what questions, however, miss-

2We assume that question stem of an imperative questions like
Name books that Pamuk has written. corresponds to the initial
predicate which signals both that the statement is a request for in-
formation and the type of information that the speaker presumably
seeks.



ing the nominal ATT will almost always cause the final an-
swers to be incorrect. We found that the most common cause
for missing the nominal ATT occurs in syntactic parsing
or while interpreting the syntactic parse tree. For exam-
ple, syntactic parsers will often mis-parse question, “What
state-of-the-art technique is being used for the newest TMNT
movie?” without the use of high performance chunking or
collocation detection. In this question, CHAUCER-2 incor-
rectly annotates state as the nominal ATT instead of tech-
nique.

Question Stem Total Questions Accuracy

who/whom/whose 58 89.7

what/which 278 97.8

when 13 92.3

where 13 92.3

how 65 100

list 8 100

name 10 100

Total 445 96.9

Table 4: Nominal Answer Type Term Detection Results, by
question stem, on TREC 2007 Questions.

The overall answer type detection accuracy scores for
CHAUCER-2 are listed in Table 5. The final score is pri-
marily due to the combined error of the Coarse, Human, and
Location classifiers.

Type Total Questions Accuracy

Coarse 445 90.6%

Human 154 90.3%

Location 59 88.1%

Fine 445 79.3%

Table 5: Answer Type Detection Results on TREC 2007
Questions.

Document Retrieval CHAUCER-2 takes advantage of the
same two-tiered approach to document retrieval first intro-
duced in (Hickl et al. 2006c). Under this approach, output
from a conservative entity-based answer extraction strategy
was used in order to re-rank the top 200 documents retrieved
from CHAUCER-2’s standard retrieval engine.

Our TREC 2007 approach follows the same four-step
approach that was implemented for our TREC 2006 sys-
tem. First, we used a standard (expanded) keyword query
to retrieve a total of 200 documents from the AQUAINT-
2 and BLOG-06 corpora. The top 50 passages were then
identified using a passage retrieval engine and submitted
to CHAUCER-2’s traditional entity-based answer extraction
system. Passages were then re-ranked based on both (1) the
density keywords extracted from the question found in each
passage and (2) the distribution of entity types correspond-
ing to the expected answer type of the question. The original
set of 200 retrieved documents were then re-ranked based
on the distribution of the top-ranked passages. As with our
TREC 2006 system, only candidate answers that were ex-
tracted from the top 50 re-ranked documents were consid-

ered by downstream Answer Selection and Answer Valida-
tion modules.

Answer Retrieval and Extraction

In this section, we the three different answer retrieval strate-
gies that CHAUCER-2 leverages in order provide answers to
factoid questions.

Extracting Answers from the Factoid Database
CHAUCER-2’s first factoid Q/A strategy takes advan-
tage of the large repository of factual information stored in
its Factoid Database in order to find answers to a fixed set
of question types. Under this approach, a series of heuristics
are used to transform specific types of questions into
database queries designed to retrieve specific information
from the Factoid Database. For example, given a question
like (Q282.2) What is Pamuk’s year of birth?, heuristics
employed by CHAUCER-2 will retrieve the BIRTH-YEAR
field associated with a record with a NAME label of Pa-
muk. While we were encouraged by the precision of this
approach, this strategy ultimately was limited in terms of
the coverage and precision of the mapping heuristics we
employed to convert questions into database queries. In
future work, we plan to explore a multi-tiered classification
approach – similar to the one we have employed for Answer
Type Detection – in order to directly map between questions
and individual fields stored in the Factoid Database.

Pattern-based Answer Extraction Previous versions of
LCC’s question-answering systems (Harabagiu et al. 2005;
Hickl et al. 2006c) have successfully used libraries of hand-
crafted patterns in order to retrieve – and extract – candidate
answers from collections of texts. Despite their promise
(and their precision), pattern-based approaches have faced
three significant challenges which have ultimately limited
their recall. First, in order to be effective, pattern-based sys-
tems must include large libraries of patterns which account
for a significant portion of the different types of questions
that users will ask. Second, pattern-based systems also need
to have access to accurate heuristics which will map differ-
ent types of questions to the classes of patterns which can
be used to extract answers. Finally, pattern-based systems
need to be used in conjunction with high-recall document re-
trieval engines: if the relevant text snippets aren’t retrieved,
pattern-based systems will not be able to return answers. In
order to counter this third challenge, CHAUCER-2 leverages
a new index annotation framework which makes it possible
to retrieve all of the text snippets matched by a pattern-based
(or variabilized) query – without having to retrieve docu-
ments using a traditional keyword-based query. CHAUCER-
2’s index annotation framework (based on work first done
by (Cafarella & Etzioni 2005) for an information extraction
application) which makes it possible to extract all of the text
passages matching an extraction pattern in a text collection
without having to retrieve documents through an informa-
tion retrieval engine. Following (Cafarella et al. 2005), we
developed our own retrieval engine – which we refer to as
theneighborhood retrieval engine – which can return short
text snippets in response to variabilized queries. For ex-



ample, given a query like TYPE PERSON NAME such as
ProperNoun(Head(NP)), our engine will return the set
of entities marked as TYPE PERSON NAME which are fol-
lowed by the sequence of the string such as and any proper
noun which also heads an noun phrase (NP).

CHAUCER-2’s neighborhood retrieval engine pro-
cesses variables like TYPE PERSON NAME or
ProperNoun(Head(NP)) by returning every pos-
sible string in the corpus that has a matching type and that
can be substituted for the variable and still satisfy the user’s
query. In order to retrieve the extensions of these variables
quickly and without having to post-process documents, we
again followed (Cafarella et al. 2005) in creating a new type
of augmented inverted index, known as a neighborhood
index, which allows for the processing of these queries
with O(k) random disk seeks and O(k) disk reads, where
k is defined as the number of non-variable terms in a
query. In addition to keeping a list of the documents in
which a term occurs – and a list of positions where the
term occurs, the neighborhood index also stores a list of
left-hand and right-hand neighbors at each position. The
neighborhood contains the tokens token the left and right of
the center token as well as any named entities and phrase
chunks that end just before the token or start just after the
token. Neighborhoods are additionally constrained to avoid
crossing sentence boundaries.

Neighborhood indices are built by loading the documents
from a normal Lucene index in order to produce a sepa-
rate index just to represent neighborhoods. Most stop words
are indexed because they can be important for certain query
types, although queries involving stop words take much
longer to execute than other queries. To reduce the size of
the index, common words are stored in a dictionary and the
index contains 1- or 2-byte pointer into the dictionary. Less
common words are stored verbatim in the index. When de-
termining which entities and phrase chunks are adjacent to a
given token, some tokens are skipped. These tokens include
articles, the word ”who”, quotation marks, and parenthesis.
Skipping over these tokens dramatically increases the recall
of some queries. These ”noise” tokens are not stop words in
the traditional sense; it is possibly to include these tokens in
a query, but their presence in a document does not prevent
neighborhoods from being found.
Entity-based Answer Extraction As with the TREC
2006 version of CHAUCER, CHAUCER-2’s entity-based an-
swer extraction strategy uses the distribution of named enti-
ties (recognized by LCC’s CICEROLITE named entity recog-
nition system) in order to identify candidate answers to indi-
vidual questions. Under this approach, passages containing
entity types associated with the question’s expected answer
type are first retrieved from the set of documents retrieved
by the system. Candidate answers found within each pas-
sage are then extracted and re-ranked based on the distri-
bution and density of question keywords discovered in each
passage.

While traditional entity-based Q/A strategies have
shown much promise in previous TREC QA evalua-
tions (Harabagiu et al. 2005), they often retrieve many spu-

rious answers which can greatly complicate the tasks of An-
swer Ranking and Answer Selection. In our TREC 2007
work, we hypothesized that if we could retrieve candidate
answers not just based on the distribution of entity types –
but in terms of specific conjunctions of semantic features ex-
tracted from a question – we could constrain the total num-
ber of candidate answers that are retrieved for a question
without experiencing any reduction in overall precision.

In our experiments, we investigated how five different se-
mantic features – based on the distribution of semantic de-
pendencies in an candidate answer (as recognized by LCC’s
PropBank and NomBank parsers) – could be used in order
to enhance the precision of a traditional entity-based answer
extraction strategy. These five features included the pres-
ence of a semantic dependency found (1) between an entity
in the answer (Entans) corresponding to the question’s ex-
pected answer type and a predicate (Predans) corresponding
to a the question’s predicate answer type term, (2) between
the Entans and any other predicate in the candidate answer,
(3) between the Predans and any other argument in the can-
didate answer, (4) between an argument in the candidate an-
swer (Argans) corresponding to an argument from the ques-
tion and any other predicate in the answer, and (5) between
the Argans and the Predans. (A summary of the 10 different
strategies are presented in Table 6.3)

Strategy Ent Ent-Pred Ent-∗ ∗-Pred Arg-∗ Arg-Pred

1 X × × × × ×

2 X X × × × ×

3 X × X × × ×

4 X × × X × ×

5 X × × × X ×

6 X × × × × X

7 X × X X × ×

8 X × X × X ×

9 X × × X X ×

10 X X X × × ×

Table 6: Query Strategies used by CHAUCER-2’s Entity-
Based Q/A Strategy.

While Strategy 1 in (Table 6 corresponds to the default
entity-based Q/A strategy, Strategies 2 through 10 represent
contexts in which the retrieved candidate answers are subject
to additional constraints. For example, Strategy 8 requires
that all retrieved candidate answers must meet two condi-
tions. First, any valid candidate answer must include an en-
tity that corresponds to the expected answer type of the ques-
tion that also participates in a predicate-argument relation
with a predicate. In addition, the answer must also include
an instance of an argument from the question which partic-
ipates in a predicate-argument relationship with a predicate
as well.

In our early work, we found that most of the query strate-
gies listed in Table 6 returned few (if any) candidate answers
for most questions; however, their precision (when parser

3We selected these 10 strategies to experiment with during our
preparations for TREC 2007. We plan to explore the other possible
combinations of features in future work.



errors where taken into account) in many cases approached
100%. In order to capitalize on these high-precision, low-
recall strategies, we impelmented these 10 strategies as an-
other cascade, which ranged from the most restrictive strate-
gies (i.e. the ones which included the most constraints) to
the least restrictive (i.e. Strategy 1, the traditional entity-
based strategy). Although we considered candidate answers
retrieved by all 10 strategies during Answer Ranking and An-
swer Validation, candidate answers were assigned a weight
corresponding to the query strategy (or strategies) which was
responsible for retrieving them; answers retrieved by more
restrictive strategies received higher weights than those re-
trieved by less restrictive strategies.

Answer Ranking
Following Answer Extraction, CHAUCER uses a Maximum
Entropy-based re-ranker (similar to (Ravichandran, Hovy, &
Och 2003)) in order to compile answers from each of the six
answer extraction strategies into a single ranked list. This
re-ranker was trained on the top ten answers returned by
each of CHAUCER’s answer extraction strategies for each
of the questions taken from the TREC 2004 and TREC 2005
datasets. (Answers were keyed automatically using “gold”
answer patterns made available by the TREC organizers and
other participating teams.) Five sets of features were used
in this re-ranker: (1) the strategy used to extract the answer,
(2) the EAT of the original question, (3) the entity type asso-
ciated with the exact answer, (4) the redundancy of the an-
swer across the top-ranked answers, and (5) the confidence
assigned to the answer by each answer extraction strategy.

Answer Selection
Once a ranking of candidate answers is performed, the top
25 answers were then sent to an Answer Selection module
which leverages LCC’s state-of-the-art textual entailment
system in order to identify the answer which best approx-
imates the semantic content of the original question. Pop-
ularized by the recent PASCAL Recognizing Textual En-
tailment (RTE) Challenges (Dagan, Glickman, & Magnini
2005), textual entailment systems seek to identify whether
the meaning of a hypothesis can be reasonably inferred from
the meaning of a corresponding text. While the RTE Chal-
lenges have focused to-date only on the computation of en-
tailment relationships between sentence-length texts and hy-
potheses, our recent work (Harabagiu & Hickl 2006) has
shown that current systems for recognizing TE can be lever-
aged to accurately identify entailment relationships between
questions and answers – or even questions and other ques-
tions.

CHAUCER uses the entailment system described in (Hickl
et al. 2006b) in order to estimate the likelihood that a ques-
tion entails either (1) a candidate answer extracted by one
of CHAUCER’s six answer extraction strategies or (2) a pre-
dictive question generated by the Predictive Question Gen-
eration module. Following (Harabagiu & Hickl 2006), we
first filtered all candidate answers that were not entailed by
the original questions. The remaining candidate answers
(including any remaining predictive question-answer pairs)
were re-ranked based on the entailment confidence output by

the RTE system. The top-ranked answer was then returned
as our submitted answer.

4. List Questions
This section describes the multiple strategies that
CHAUCER-2 uses in order to provide answers to list
questions. In order to maximize both precision and recall
of the list answers CHAUCER-2 returns, we developed two
distinct types of answer-finding strategies: (i) strategies
that find all globally correct answers from an external
knowledge source, then choose the supported answers
that actually exist in the text, and (ii) strategies that find
possible answers in the text and retain only those that
pass some form of validation. The Type (i) strategies we
have investigated in our TREC 2007 work include an (1)
Authoritative Source strategy, a (2) Wikipedia list strategy,
and a (3) Lexicon strategy. We only investigated one Type
(ii) strategies this year, however: a Web Count strategy first
introduced in (Hickl et al. 2006c).

Figure 2: Wikipedia Infobox for “St. Peter’s Basilica”

Authoritative Source List Strategy Similar to the Struc-
tured Data strategy implemented for factoid questions,
CHAUCER-2’s Authoritative Source strategy uses the
sources of semi-structured data stored in the Factoid
Database in order to provide answers to list questions. Al-
though the Factoid Database was used primarily used for
answering factoid questions, some list fields (such as the



types of lists found on sites like imdb.org or stored in
the HTML table “infoboxes” found on many wikipedia.org
pages) were extracted heuristically and stored in the Factoid
Database prior to the TREC 2007 evaluation. As with fac-
toid questions, heuristics are used to map common question
types to the particular fields (and sources) which would be
most likely contain a correct answer. In addition, we found
that the the the nominal ATT (as recognized by the Answer
Type Detection module could often be used to identify a field
which could contain a relevant set of answers. For example,
given a question like (278.5) What architects were involved
in building St. Peter’s?, we found that searching the Fac-
toid Database for the term architect returned a pointer to the
“infobox” included on the wikipedia.org page for St. Peter’s
Basilica which mentions the four architects who worked on
the basilica (e.g. Donato Bramante, Antonio da Sangallo
the Younger, Michelangelo, and Giacomo della Porta. (See
Figure 2 for an example of a “infobox”.)
Wikipedia List and Table Strategy Our second strategy
sought to leverage lists and tables mentioned on relevant
Wikipedia4 pages in order to identify candidate answers for
list questions. Under this strategy, keywords extracted from
both the question and the series target were used to retrieve a
set of relevant pages from Wikipedia. Heuristics used to ex-
tract lists (and to “unroll” HTML) tables were then used – in
conjunction with entity information available from CICERO-
LITE in order to identify sets of multiple candidate answers.
For example, the question (217.6) What are titles of albums
featuring Jay-Z? has answers that can be found in the table
on Wikipedia’s “Jay-Z discography” page.5
Lexicon List Strategy In a third strategy, we used the
collection of more than 800 different lexicons included in
LCC’s CICEROLITE in order to provide answers to list ques-
tions. As with the previous two strategies, heuristics were
used again to map between selected types of question types
(and or question keywords) and each of the lexicons avail-
able to CHAUCER-2.CHAUCER-2 utilizes the lexicon list
strategy if three conditions are met: (1) a lexicon exists
that matches the nominal ATT, (2) the nominal ATT is suf-
ficiently far down the answer type hierarchy (by default, 2
nodes) from a coarse type, and (3) there is a proper noun
(which becomes a mandatory keyword) after the nominal
ATT in the question. This means that a questions like “What
Republican senators supported the nomination?” and “What
persons has Krugman criticized in his op-ed columns?” will
not use the lexicon strategy (due to conditions (3) and (2),
respectively), while a question like “What musicals did Kurt
Weill write?” will.
Web Count List Strategy As with our TREC 2006 sys-
tem, CHAUCER-2 also utilizes a method based on term fre-
quency counts (obtained from search engines like Google)
in order to determine how much of an associate there was
between a candidate answer and both the series target and
answer type term. These two scores were then combined

4http://www.wikipedia.org
5http://en.wikipedia.org/wiki/Jay-Z discography

in order to rank each individual candidate answer; answers
above a threshold were included in the set of candidate an-
swers considered by the system.

Strategy Selection As with factoid questions, we again
cast the problem of selecting answers from multiple strate-
gies as a cascade: list answers were considered first from
the (1) Authoritative Source strategy, followed by answers
from the (2) Wikipedia List and Table strategy, the (3) Lex-
icon List strategy, and (4) the Web Count strategy. Answers
were added to the list until there were a maximum number of
answers – or until there were no answers with a confidence
level above a fixed threshold to return.

5. Answering “Other” Questions
In this section, we describe our approach to answering the
“other” questions included with each question in the TREC
2007 QA Main Task.

As with our TREC 2006 submission, CHAUCER-2 begins
the process of finding answers to “other” questions by first
computing two types of automatic topic representations, in-
cluding: (1) weighted lists of topic relevant terms known as
Topic Signatures (Lin & Hovy 2000) (TS1) and (2) a corre-
sponding weighted list of topic relevant relations, known as
Enhanced Topic Signatures (Harabagiu 2004) (TS2). (As
described in (Hickl et al. 2006c), both topic representa-
tions are computed from the top 100 documents retrieved
from the AQUAINT-2/BLOG-06 corpus using keywords ex-
tracted from the series target – and all of the previous ques-
tions contained in the question series.)

Nugget Extraction
Once sets of TS1 terms and TS2 relations have been com-
puted, CHAUCER-2 retrieves the top 500 documents from
the AQUAINT-2/BLOG-06 corpus which contain at least
one keyword from the series target. Passages are then
extracted and ranked based on the top 25 most topical
terms and relations. The top 500 passages retrieved using
this method are then split into individual clauses using the
sentence decomposition techniques introduced in (Hickl &
Bensley 2007) and then were made available to the follow-
ing four nugget extraction techniques.

“Web Words” Nugget Extraction Following an ap-
proach proposed by (Kaisser, Scheible, & Webber 2006), we
used the top 50 most frequently-occurring non-stop words
found in the first 100 pages retrieved from Google contain-
ing the series target in order to rank sentences retrieved from
the AQUAINT-2/BLOG-06 corpus. Top-scoring sentences
were then sent to an Answer Selection module to be com-
bined with output from the other nugget extraction tech-
niques.

Topic-Based Nugget Extraction Following work done
by (Lacatusu et al. 2006) for question-focused summariza-
tion, we used weights associated with TS1 terms and TS2 re-
lations to compute a composite topic score for each sentence
in the set of documents retrieved for a target. Sentences were
re-ranked based on their topic score before being submitted
to the Answer Selection module.



Soft Pattern-Based Nugget Extraction As with our
TREC 2006 submission, we again experimented with us-
ing the probabilistic soft matching techniques first described
in (Cui, Kan, & Chua 2004) in order to identify additional
patterns that could be used to extract nuggets for a partic-
ular target type. we followed (Cui, Kan, & Chua 2004) in
developing a bigram soft pattern model in order to identify
potential matches between a set of training sentences and
each of the sentences extracted for a particular target. Train-
ing sentences were derived for each target type from two
different sources: (1) the collection of “gold” nuggets iden-
tified for the TREC 2005 “other questions” and a collection
of 5,000 biographies, descriptions, and encyclopedia articles
that were downloaded from the collection of “authoritative
sources” used to populate CHAUCER-2’s factoid database.

Headline Extraction In addition to nuggets retrieved us-
ing the previous three strategies, CHAUCER-2 also retrieves
all of the document headlines which contain both the series
target and at least one TS1 term or TS2 relation. While not
every series target appeared in a headline of a document con-
tained in the AQUAINT-2 collection, we found that head-
lines often contained a succinct, topical statement that was
not unlike the “gold standard” nuggets reported as the keys
for “other” questions. Since headlines appeared to provide
consistently good information for “other” questions, they
were not submitted to the Answer Selection module, but ap-
pended to the top of each submitted set of nuggets.

Answer Combination
In a departure from the content modeling approach intro-
duced in (Hickl et al. 2006c), we used a simple combination
method to combine (and rank) candidate nuggets for sub-
mission. Following work done by (Lacatusu et al. 2006) for
the DUC multi-document summarization evaluations, can-
didate nuggets were assigned a composite score based on
the density of TS1 terms and TS2 relations as well as the
individual rank that they were assigned by each individual
nugget extraction technique. All nuggets which received a
score above a fixed threshold were returned as part of our
official submission.

6. Evaluation Results
Table 7 presents a summary of CHAUCER-2’s performance
on the TREC 2007 QA Main Task.

Task Evaluation Metric CHAUCER-2

Factoid Q/A Accuracy 56.1%

List Q/A Fβ1 32.4%

“Other” Q/A Fβ3 26.1%

Series Score Aggregate 35.8%

Table 7: Summary of TREC 2007 QA Main Track Results.

A detailed breakdown of the results from the Factoid Q/A
task is presented in Table 8.

TREC 2007 marked the first year where we made a con-
centrated effort to develop a coherent strategy for answering
list questions. We believe our results to be encouraging: our

Judgment Percent

Wrong 37.5%

Unsupported 2.7%

Inexact 4.7%

Locally Correct 1.2%

Globally Right 53.8%

Table 8: TREC 2007 Factoid Q/A Results

TREC 2007 results more than doubled our TREC 2006 re-
sults in terms of recall, precision, and F-measure (Fβ1).

Metric TREC 2007

Recall 0.361

Precision 0.412

F(β=1) 0.324

Table 9: TREC 2007 List Q/A Results

Finally, Table 10 shows our precision, recall, and F-Score
for “other” questions.

Metric TREC 2007

Recall 0.288

Precision 0.2501

F(β=3) 0.261

Table 10: TREC 2006 Other Q/A Results

6. Conclusions
This paper describes CHAUCER-2, the most recent version
of Language Computer Corporation’s CHAUCER line of au-
tomatic question-answering systems. Developed for the
2007 TREC QA Track Main Task, CHAUCER-2 was de-
signed to explore how a new, semantically-rich framework
for information retrieval could be used to boost the overall
performance of the answer extraction and answer selection
components of an end-to-end question-answering system.

First, unlike the keyword-based retrieval systems used
by LCC’s previous Q/A systems (Harabagiu et al. 2005;
Hickl et al. 2006c), CHAUCER-2 employed a novel in-
dexing and retrieval engine which supported a wide range
of semantically-rich queries, including queries based on se-
mantic types recognized by LCC’s CICEROLITE named en-
tity recognition system as well as semantic dependencies
identified by LCC’s PropBank-, NomBank-, and FrameNet-
based semantic parsers. We found that support for these new
types of queries dramatically enhanced the performance of
the retrieval components used in CHAUCER-2 while signif-
icantly reducing the number of candidate answers that had
to be considered by CHAUCER-2s Answer Ranking and An-
swer Validation modules.

In addition to supporting multiple query types,
CHAUCER-2 also leveraged a variant of the Bindings
Engine (BE) first proposed by (Cafarella & Etzioni 2005;
Cafarella et al. 2005) in order to retrieve of all of the text
snippets matched by a query without having to retrieve
documents using a keyword-based query. We found that use
of this framework greatly both enhanced the efficiency and
the recall of traditional pattern-based approaches to Q/A.

Finally, CHAUCER-2 incorporated a new, multi-tiered
Answer Type Detection (ATD) module which reduced the



number of expected answer types (EATs) considered by the
system for factoid or list questions, while maintaining the
same high levels of precision exhibited by previous systems.

Acknowledgments
The authors would like to thank Sanda Harabagiu, Paul Aarseth,
John Lehmann, and Luke Nezda for their assistance with this work.
This material is based upon work funded in whole or in part by
the U.S. Government and any opinions, findings, conclusions, or
recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the U.S. Government.

References
Cafarella, M., and Etzioni, O. 2005. A Search Engine for Natural
Language Applications. In Proceedings of the Fourteenth World
Wide Web conference (WWW 2005).

Cafarella, M.; Downey, D.; Soderland, S.; and Etzioni, O. 2005.
KnowItNow: Fast, Scalable, Information Extraction from the
Web. In Proceedings of EMNLP-2005.

Chakrabarti, S.; Krishnan, V.; and Das, S. 2005. Enhanced an-
swer type inference from questions using sequential models. In
Proceedings of EMNLP.

Cui, H.; Kan, M.-Y.; and Chua, T.-S. 2004. Unsupervised Learn-
ing of Soft Patterns for Definitional Question Answering. In Pro-
ceedings of the Thirteenth World Wide Web conference (WWW
2004), 90–99.

Dagan, I.; Glickman, O.; and Magnini, B. 2005. The pascal
recognizing textual entailment challenge. In Proceedings of the
PASCAL Challenges Workshop.

Harabagiu, S., and Hickl, A. 2006. Methods for Using Textual
Entailment in Open-Domain Question Answering. In Proceed-
ings of COLING-ACL.

Harabagiu, S.; Moldovan, D.; Clark, C.; Bowden, M.; Hickl, A.;
and Wang, P. 2005. Employing Two Question Answering Sys-
tems in TREC 2005. In Proceedings of the Fourteenth Text RE-
trieval Conference.

Harabagiu, S.; Hickl, A.; and Lacatusu, F. 2006. Negation,
Contrast and Contradiction in Text Processing. In Proceedings
of AAAI-06.

Harabagiu, S. 2004. Incremental Topic Representations. In Pro-
ceedings of the 20th COLING Conference.

Hickl, A., and Bensley, J. 2007. A Discourse Commitment-based
Framework for Recognizing Textual Entailment. In Proceedings
of the ACL 2007 Workshop on Paraphrasing and Textual Entail-
ment.

Hickl, A., and Harabagiu, S. 2007. Machine Reading through
Textual and Knowledge Entailment. In Proceedings of the 2007
AAAI Spring Symposium on Machine Reading.

Hickl, A.; Wang, P.; Lehamnn, J.; and Harabagiu, S. 2006a.
Ferret: Interactive Question-Answering for Real-World Research
Environments. In Proceedings of the 2006 COLING-ACL Inter-
active Presentations Session.

Hickl, A.; Williams, J.; Bensley, J.; Roberts, K.; Rink, B.; and
Shi, Y. 2006b. Recognizing Textual Entailment with LCC’s
Groundhog System. In Proceedings of the Second PASCAL Chal-
lenges Workshop (to appear).

Hickl, A.; Williams, J.; Bensley, J.; Roberts, K.; Shi, Y.; and Rink,
B. 2006c. Qusetion Answering with LCC’s Chaucer at TREC
2006. In Proceedings of the Fifteenth Text REtrieval Conference.

Kaisser, M.; Scheible, S.; and Webber, B. 2006. Experiments at
the University of Edinburgh for the TREC 2006 QA Track. In
Proceedings of the Fifteenth Text REtrieval Conference.

Lacatusu, F.; Hickl, A.; Roberts, K.; Shi, Y.; Bensley, J.; Rink,
B.; Wang, P.; and Taylor, L. 2006. Lcc’s gistexter at duc 2006:
Multi-strategy multi-document summarization. In Proceedings of
DUC 2006.

Lehmann, J.; Aarseth, P.; Nezda, L.; Deligonul, M.; and Hickl, A.
2005. TASER: A Temporal and Spatial Expression Recognition
and Normalization System. In Proceedings of the 2005 Automatic
Content Extraction Conference.

Li, X., and Roth, D. 2002. Learning question classifiers. In
Proc. the International Conference on Computational Linguistics
(COLING).

Lin, C.-Y., and Hovy, E. 2000. The automated acquisition of topic
signatures for text summarization. In Proceedings of the 18th
conference on Computational linguistics, 495–501. Morristown,
NJ, USA: Association for Computational Linguistics.

Ravichandran, D.; Hovy, E.; and Och, F. 2003. Statistical qa -
classifier vs re-ranker: What’s the difference? In Proceedings of
the ACL Workshop on Multilingual Summarization and Question
Answering.


