
Modeling Procedural State Changes over Time with Probabilistic Soft Logic

Michael Mohler, Sean Monahan, Marc Tomlinson
{michael,smonahan,marc}@languagecomputer.com

Language Computer Corporation
Richardson, Texas

Abstract

Robust natural language understanding involves the auto-
matic extraction and representation of entities, events, and
states from unstructured text. However, a significant portion
of the knowledge required for human-level understanding is
implicit in the text and can only be accessed through in-
ference. In this work, we employ Probabilistic Soft Logic
(PSL) as a framework for leveraging common-sense knowl-
edge to support natural language understanding over procedu-
ral texts. Under this framework, we combine logical consis-
tency constraints with succinct representations of common-
sense knowledge to probabilistically model entity-centric sta-
tive information over time. We demonstrate the feasibility of
using PSL to represent procedural stative knowledge through
a scalability assessment over an in-house, multi-domain, syn-
thetic dataset.

The goal of natural language understanding is to convert
textual information into a machine-readable knowledge rep-
resentation in a manner analogous to human reading and
comprehension. Derived knowledge can then be used in
support of automatic question answering (Ostermann et al.
2018), automated planning (McCluskey, Vaquero, and Val-
lati 2017), and other artificial intellience tasks. While there
have been significant advances in information extraction
(IE) and knowledge base population (KBP) over the past few
decades, explicit information directly extracted from text is
insufficient for driving artificial intelligence tasks on its own.

For example, in an automated planning (or plan recogni-
tion) scenario, it may be necessary to identify which entities
are capable of traveling long distances. In the example sen-
tence “Alice gave Bob a car; then Bob left”, extraction com-
ponents will identify and populate a knowledge base (KB)
with three entities (“Alice”, “Bob”, and “a car”) and two
events (“gave” and “left”) but no explicit stative informa-
tion. The extracted information cannot be used on its own
to answer the underlying question (i.e., who can travel long
distances) and cannot represent the complex facts that both
individuals have possessed the car, but not at the same time.

In order to overcome this limitation, we apply logical in-
ference as a secondary step to expand the content of the
knowledge base. In particular, we seek to model the evolu-
tion of state information through time by combining a time-

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

aware knowledge representation with probabilistic inference
rules which correspond to common-sense knowledge. For
this example, it is possible to identify two dimensions of
state associated with the text (i.e., “colocation” and “posses-
sion”) and track changes among those states, for each entity,
throughout the temporal scope of the events. The resulting
state information is shown in Table 1.

Time States
Before “gave” Possess(Alice, car) ¬Possess(Bob, car)

Colocated(Alice, Bob, car)
Between “gave” Possess(Bob, car) ¬Possess(Alice, car)
and “left” Colocated(Alice, Bob, car)
After “left” Possess(Bob, car) ¬Colocated(Alice, Bob)

Table 1: Evolution of state information for the sentence “Al-
ice gave Bob a car; then Bob left.”

Our objectives in this work are three-fold. First, we will
describe our representation of common-sense knowledge
and its applicability to modeling entity state across time.
Second, we will show how the inference engine automati-
cally derives probabilistic logic rules from this knowledge
and exploits global consistency to perform entity-focused
state modeling over sequences of events. Finally, we will
address the practical limitations of PSL-based inference over
increasing quantities of realistic data through a two-part
scalability assessment.

Related Work
Amassing and representing common-sense knowledge for
use in artificial intelligence applications has long been re-
garded as a critical path in achieving human-level reason-
ing. WordNet,1 the most widely used source of knowledge in
natural language processing, was constructed manually be-
ginning in 1985 with the goal of identifying distinct senses
of nouns, verbs, and adjectives and encoding the hierarchi-
cal (IS-A) relationships between them. The Cyc KB,2 which
was also developed by hand over several decades, was con-
structed to formalize common-sense knowledge in a logical
framework. More recently, the ConceptNet toolkit (Liu and
Singh 2004) combined crowdsourced knowledge acquisition

1https://wordnet.princeton.edu/download
2https://www.cyc.com/



with automatic extraction to encode such common-sense re-
lationships as EffectOf, DesireOf, and CapabilityOf.

Within the more constrained space of automated planning
with artificial agents, common-sense knowledge is defined
as “whatever the agent needs to know about how its en-
vironment works in order to achieve its task” and is typi-
cally created by hand. The standard for representing such
knowledge is the STRIPS action language (Fikes and Nils-
son 1971) which is based on propositional logic and defines
(a) the set of actions available to the agent, (b) the precondi-
tions for each action (i.e., what must be true about the envi-
ronment before the action can occur), and (c) the effects of
each action (i.e., how it will change the environment). Our
knowledge representation described in this work is modeled
off of STRIPS with hierarchical and logical components in-
spired by WordNet and Cyc.

Research in the representation and use of dynamic knowl-
edge bases, which track changes in entity state across time,
was pioneered in the development of an Event Calculus
(Shanahan 1999), which uses a logical formalism to rep-
resent the relationships between EVENTS (actions) and
STATES (fluents) over time by encoding the initiating and
terminating effects of known events and ensuring logical
consistency. Within the planning domain, state modeling
proceeds one step at a time, where planners heuristically
model the progress of an agent’s state towards a goal as a
function of an initial state permuted by an action which re-
sults in a new state based on the effects of the action (Frances
and Geffner 2015). In contrast, contemporary work in pro-
cess modeling (Mishra et al. 2018) combines knowledge of
precondition/effect relations with forward- and backward-
propagation through time to result in a “Participant Grid”
showing state for each participant at each point in time. In
this work, we apply PSL to model state evolution in a logical
framework that ensures global consistency subject to small
amounts of common-sense knowledge.

Probabilistic Soft Logic (PSL) has recently been used in
variety of reasoning tasks due to (a) its approachability be-
ing derived from first-order logic, (b) its defeasibility, (c)
its ability to model uncertainty, and (d) its scalability com-
pared to other logical frameworks. PSL has been applied to
tasks ranging from knowledge base completion (Yang, Yang,
and Cohen 2017) to textual similarity identification(Belt-
agy, Erk, and Mooney 2014) and causal inference (Sridhar
and Getoor 2016). With respect to scalability, Chekol et al.
(2017) have applied both Markov Logic Networks (MLNs)
and PSL to the task of time-aware knowledge base comple-
tion. Using only a small number of hand-crafted rules in a
given domain, they report that MLNs are not capable of scal-
ing up to the size of a real-world knowledge base but that
PSL is more likely to promote scalability. Our goal in this
work is to assess the scalability of PSL on datasets of in-
creasing size and to identify efficiency bottlenecks moving
forward.

Knowledge Representation
Before introducing our inference engine, we first define
three types of primitives which are used in the representation
of both extracted and common-sense knowledge – entities,

events, and states. An entity is a particular object, thing, or
person in the real world with distinct and independent exis-
tence. An event is defined as an occurrence which results in
a change in the state of the world. A state is the condition at
some moment in time of an entity, an event, or a collection
thereof. We define the relationship between the three primi-
tives such that (a) all events, by definition, lead to some new
state, and (b) each state or event is grounded by entities (or
other states/events) to fill zero or more type-constrained se-
mantic roles. In this way, we represent knowledge in a way
analogous to semantic frames, where each frame (i.e., state
or event) is grounded with a time parameter. As a part of
this work, we have defined a shallow entity type ontology
(e.g. THING→LIVING THING→PERSON), which is used
to constrain the arguments of events and states.

Figure 1: At all times, a pair of living PERSON entities are
in exactly one of the marital states – (1) NEVER MAR-
RIED, (2) MARRIED, or (3) DIVORCED – and the life sta-
tus of both persons is a sustaining condition for all three.

In order to model the evolution of state over time, we de-
fine common-sense knowledge in the context of a single di-
mension of state at a time. For instance, the most founda-
tional stative dimension is “existence” – i.e., something ei-
ther “exists” or does not exist, with “before existence” and
“after existence” being distinguished. Each of these three
states has two arguments – a single entity argument (i.e., a
THING which exists or not) and a time argument. There are
three principal events related to the dimension of existence
– “creation”, “destruction”, and “transformation” – which
deterministically result in transitions from one state in this
dimension to another. Each of these two events have, in ad-
dition to a time of occurrence, a pair of arguments – a cause
(an ACTOR/PROCESS) and an object of type THING.

Within the context of a single stative dimension, we rep-
resent four types of inferential knowledge. The first of these
types are preconditions, which are states that are known (or
expected) to be true immediately before an event occurs.
The state “before existence” is a precondition for a “cre-
ation” event. Second, we represent effects as states which are
known (or expected) to be true immediately after an event
has taken place. The state “existence” is an effect of “cre-
ation”. Taken together, preconditions and effects can be or-
ganized into a graphical structure where states within the di-
mension are represented as nodes and events are represented
as directed edges linking those nodes. An outlink from a
state encodes a precondition while an inlink encodes an ef-
fect. Third, we define sustaining conditions which are states
which must be in effect at a given time for some other state



Figure 2: Defines the preconditions for a marriage event with entity variables (X, Y) and time variables (T, TP).

(in a different dimension) to simultaneously be in effect.
The states “alive” and “dead” are not relevant for entities
which do not exist, so “existence” is a sustaining condition
for “life”. Finally, we define an entailment as an event which
occurs simultaneously with another event (e.g., “running”
and “moving”). A “transformation” event may simultane-
ously entail both a “creation” and a “destruction” event. A
graphical structure corresponding to the dimension of “mar-
ital status” is shown in Figure 1 with “ALIVE” indicated as
a sustaining condition.

Scalable Inference
Our state-focused inference engine has been designed
around Probabilistic Soft Logic (PSL) (Bach et al. 2015),
which employs the syntax of first-order logic to scalably and
probabilistically drive inference over continuous truth val-
ues. We define three steps in the process of using PSL for
probabilistic reasoning. First, we use the the entity ontol-
ogy, event and state definitions, and the precondition/effect
graph structure, sustaining conditions, and other entailments
defined for each stative dimension to automatically generate
PSL rules. Second, we ingest relevant events and states from
an existing KB3 to populate the internal PSL database with
input facts and time-grounded candidate inferences. Third,
we employ joint inference with PSL to compute truth values
for all candidate inferences in the database, while satisfying
hard and soft constraints defined by the rules. Those stative
candidates inferred to be true can then be output to indicate
the evolution of state for individual entities throughout the
temporal range of the input facts.

Rule Generation
Our first step in modeling state evolution through time with
PSL is to derive rules using the four types of common-sense,
inferential knowledge encoded for all stative dimensions.4
Before defining rules, however, we must define the cate-
gories of facts which will be available to the rule generation
and reasoning components. Each fact (or atom) consists of
a semantic predicate (e.g., an event or state) and a prede-
termined number of terms, where each term is defined by
reference to a variable name or to an identifier for a known
entity or for another fact.

3In this work, the KB is populated manually, but in general, a
KB will be populated through traditional information extraction.

4Note that this module is not dependent upon the size of any
particular input and so is the most efficient from a scalability per-
spective. However, reducing or increasing the number of rules pro-
duced has a significant effect on efficiency as the number of rules
being jointly satisfied during inference changes.

All fact predicates derived from events and states are cat-
egorized in one of five ways. Three of these categories cor-
respond to event or state types from our common-sense sta-
tive knowledge and enable the system to distinguish and rea-
son about what is happening now (CURRENT), what has
happened before (PERFECT), and what cannot happen in
the future (IMPOSSIBLE). Another category (BETWEEN)
supports reasoning about events and states bounded by
known times but which cannot be fixed at a specific point in
time. For example, if a group is known to be ATTENDING
an event at time T1, but not at some later time T2, then it can
be inferred that some DEPART event must have occurred
between T1 and T2. Those states and events which were in
the KB before inference are flagged as (EXTRACTED) and
serve as an input to inference.

In addition to those predicates derived from events and
states, we define two additional categories. The first is an
entity type predicate – e.g. PERSON(X) – which defines
that entity X is of type “person”. Importantly, all distinct
times known to the system can be bound in this way, e.g.,
TIME(T). The second class of predicate enables us to con-
strain reasoning to focus on more localized problems by
modeling temporal adjacency. In particular, we have defined
two predicates - NEXT(T,TN) and PREV(T,TP) – which de-
fine respectively the next (TN) and previous time (TP) asso-
ciated with time T. These predicate classes serve as canopies
(McCallum, Nigam, and Ungar 2000) and allow us to signif-
icantly constrain the number of rules to be satisfied by only
applying rules with relevant times and compatible entity typ-
ing.5

A PSL rule is a set of atoms joined together using a con-
strained form of the first-order logic syntax, such that the
head of the rule must consist of a set of atom conjuncts and
the body of the rule must consist of a set of atom disjuncts.6
Each rule is defined with an associated weight indicating the
relative cost of violating the rule during joint inference. Infi-
nite weights indicate a hard logical constraint which cannot
be violated without encountering a logical contradiction. For
instance, we may define an infinite weighted rule (i.e., pre-
conditions for a marriage event) as shown in Figure 2.

Altogether, we define fourteen classes of PSL rules ex-
pressing logical consistency and common-sense knowledge,
with examples and explanations shown in Table 2. These are
derived from the graph structure defined by our stative di-

5A canopy (also known as a block) limits the comparison space
between pairs of entities so that only pairs which are within the
same canopy are considered together in any rule.

6This restriction enables the system of rules to be converted into
a set of Horn clauses which can be satisfied efficiently.



Logical Axioms
Law of Excluded Middle A person must be either ALIVE or ¬ALIVE, and one implies that the other is false.
Mutual Exclusion Constraints A pair of persons must be either NEVER MARRIED, MARRIED, or DIVORCED (and only one of these) at all times they are alive.
Category Definitions If a person X is ALIVE CURRENT at time T, then by definition they are also:

ALIVE PERFECT(X,T); ALIVE BETWEEN(X,T,T); and ¬ALIVE IMPOSSIBLE(X,T)
Category Entailments If a person is ALIVE PERFECT, they will be ALIVE PERFECT at all future times.

If a person is ¬ALIVE IMPOSSIBLE, they were also ¬ALIVE IMPOSSIBLE at all prior times.
If a person is ALIVE BETWEEN, they were also ALIVE BETWEEN for all ranges containing its time range.

Existential Quantification If a person X is MARRIED to person Y, then the facts that person X is MARRIED (to someone) and person Y is
MARRIED (to someone) are also true.

Knowledge-Based Rules
Precondition/Effect When a person experiences a BIRTH event, they enter the ALIVE state

Before a person experiences a DEATH event, they must have been in the ALIVE state.
Sustaining Conditions If a pair is MARRIED, DIVORCED, or NEVER MARRIED, we can infer they are each ALIVE.

If a company is EMPLOYING someone, then the company EXISTS at that time.
Ontological Entailment If an entity is type PERSON, the entity is also type LIVING THING.
Inferred Precedents If a person is ALIVE, they must have once had a BIRTH.

If a person is DIVORCED or WIDOWED, they must have once been MARRIED.
Inferred Between If a person is ALIVE at time T, and DEAD at time T2, there must have been a DEATH event

at some time between T and T2.
State Persistence If a person is DEAD, they will be DEAD at all later times.

If a person is ALIVE at time T and ALIVE at time T2, then they are ALIVE at all times between T and T2.
Priors and Assumptions

Category Priors Assume a state/event does not hold (CURRENT)
Assume states/events have never held (PERFECT=false at final time)

Persistence Assumptions Assume a state is the same at the next/previous times
Initial Conditions Assume an initial state holds within a group (e.g., a pair of living persons are NEVER MARRIED)

Table 2: Fourteen classes of rules which are automatically derived from the graph structure for each stative dimension.

mension knowledge resources, but are independent of the
particular events and states in any dimension. The first of
these groups, labeled “Logical Axioms”, represent the log-
ical system itself across all dimensions. Rules from this
group have infinite weight, meaning that they cannot be vi-
olated without resulting in a logical contradiction. They de-
fine the excluded middle principle, mutual exclusion among
states in a group, relationships among predicate categories,
and the inference of existential quantification facts (i.e.,
there exists argument X, such that the fact holds).

The second group, labeled “Knowledge-Based Rules”,
are derived from the structure and reachability information
of our stative dimension graphical structures. Rules from
this group include precondition/effect, entailments, sustain-
ing conditions, inferred events (before a time or between
times), and unambigous state persistence. These rules like-
wise have infinite weight and cannot be violated without
contradiction.

The last group, labeled “Priors and Assumptions”, are
rules which may be violated without resulting in a contra-
diction. However, they represent either strong (probabilistic)
assumptions or weak priors (with very low weight) on what
to expect when no better information is available. By incor-
porating prior rules into our inference engine, we ensure the
defeasibility of facts in a dynamic setting. If newer informa-
tion results in a previously inferred fact being rejected, the
tendency to assume the weak priors will work to remove in-
ferences derived from the rejected fact, thereby ensuring the
logical consistency of the system overall.

Fact Population
In the second stage, the set of grounded facts which may
be inferred (i.e., the candidate inferences) are ingested into
the PSL database. Initially, the database is seeded with only

the EXTRACTED facts from the KB. Then, it must be popu-
lated with all facts which could conceivably be true to define
a closed world within which reasoning takes place. This step
significantly impacts the scalability of the system by directly
affecting the size of the database and indirectly affecting the
number of grounded rules which must be jointly satisfied in
the inference stage. In order to provide a practical look at
the use of PSL for inference, we describe three alternative
methodologies for fact population that were attempted over
the course of this work.

Under the first methodology, we only ingested EX-
TRACTED facts and made use of an option within the PSL
framework itself to lazily add facts to the database whenever
they were inferred. That is, grounding a rule required only
that all facts in the head exist in the database; facts in the
body could be automatically added. This mode resulted in
an iterative inference stage and incurred a significant penalty
to efficiency as the number of iterations before convergence
was substantial and each iteration became less and less effi-
cient.

In the second methodology, we populated the database
with candidate facts such that each predicate was grounded
to all possible entities from the input, with all possible times
from the input – e.g., whether all pairs of people were MAR-
RIED/DIVORCED/WIDOWED at every time step in the in-
puts. This method resulted in a database where the vast ma-
jority of candidate facts were never in danger of being in-
ferred, but whose associated rules must sill be satisfied dur-
ing inference.

Ultimately, we worked to automatically identify the most
likely candidate facts as follows. First, we employed the
entity-type ontology to limit the entity groundings for a
given predicate. For instance, the MARRIAGE predicate
does not need to be grounded for a “book” entity. Next, we



employed two different forms of logical canopies to con-
strain the possibilities. Our first canopy was an input entity-
pair canopy which constrained the rules to only consider a
pair of entities together if they participated together in ANY
input fact. We likewise simplified our temporal space by
binding entities to particular times (i.e., all the times that
co-occurred with the entity in the input facts, plus the first
and the last times over all facts), so that no fact would be
defined for an entity if the input made no mention of it at
that time.

PSL Inference
Probabilistic Soft Logic (Bach et al. 2015) is an infer-
ence framework which employs hinge-loss Markov random
fields (HL-MRF) to enable scalable inference over data con-
strained by grounded rules. A grounded rule is an instantia-
tion of PSL rule over real facts in the database (i.e., ground-
ing). Within a grounded rule, each atom will have been re-
solved such that all variables are replaced with the identifier
of some entity or fact in the database, under the constraint
that all equivalent variables in the rule must be grounded
to the same identifier. Unlike other first-order logic frame-
works where each atom holds a binary truth value, PSL em-
ploys soft logic to enable probabilistic inference and to sup-
port significant scalability gains. This requires an alternative
definition of both truth values and the Boolean operators. In
particular, PSL relaxes truth values to a continuous value
in the [0..1] interval and applies the Łukasiewicz t-norm
and its dual t-conorm to define the logical conjunction and
disjunction operators, respectively. That is, AND(A,B) =
max(0, A+B−1) and OR(A,B) = min(1, A+B). Like-
wise, logical negation is defined as NOT (A) = 1−A. With
these definitions in mind, each grounded rule in the database,
after inference, will be considered satisfied if the conjunctive
truth value of the head is less than or equal to the disjunctive
truth value of the body and violated otherwise.

At inference time, the PSL reasoning module iteratively
updates the truth values of all ground atoms, subject to the
rule constraints, so as to induce a joint probability distri-
bution over the set of facts, F, in the database. More for-
mally, the inference module assigns a truth value T (f) to
each fact f ∈ F and computes a distance to satisfaction for
each grounded rule r ∈ R as Φ(r) = max(0, Thead(r) −
Tbody(r)), where the truth value of the rule heads and bod-
ies are defined via conjunction or disjunction over the facts
which compose them. PSL then defines a probability distri-
bution over R as PΨ(R), represented as a weighted com-
bination of the distances to satisfaction over the grounded
rules, i.e.: PΨ(R) = 1

Z exp[−
∑

r∈R ωrΦ(r)], where ωr is
the rule weight.

Finding the soft-truth values of every fact in the database,
F, so as to minimize the value PΨ(R) of the weighted con-
straint violations across all grounded rules is equivalent to
inferring the most probable explanation (MPE) for the input
facts. This can be formulated as a convex optimization prob-
lem, which is solved under PSL using the Alternating Direc-
tion Method of Multipliers (ADMM) (Bach et al. 2012) and
scales linearly with the number of grounded rules. Once in-
ference is complete, the database can be queried to identify

the truth values for all candidate facts – i.e., all states associ-
ated with entities at any point in time – to build up the final
model of state evolution. For the purpose of interpretabil-
ity, the soft-truth values of ground atoms can be seen as a
posteriori confidences in the truth of each possible fact.

As a side-effect of performing global inference with PSL,
it is possible to detect inconsistencies in the input (KB) data.
Although, the PSL inference module attempts to assign val-
ues to each fact without violating any constraints (rules), it
will prefer to violate constraints with lower weight – first pri-
ors, but then rules defining the truth of the original KB facts.
Therefore, violated input constraints are often indicative of
facts in the KB which result in a contradiction. In an oper-
ational system, these can be resolved by other downstream
components or provided to the user for further analysis.

Experiments
In order to benchmark PSL inference for scalability, we have
manually defined predicates and common-sense knowledge
associated with 13 stative dimensions including “existence”,
“life”, “marriage”, “injury”, “damage”, “knowledge”, “pa-
per publication”, “paper topic inclusion”, “process stages”,
“event attendance”, “employment”, “interpersonal associa-
tion”, and “gender”.7 On average, knowledge engineering
for each dimension required 15-25 minutes of manual effort.

Using this knowledge resource, we developed a synthetic
KB as follows. First, we defined a set of entities of various
types – people, objects, processes, etc. Then, we automati-
cally generated 100 events or states associated with our most
foundational domain (i.e., EXISTENCE). These were gen-
erated by randomly selecting one of the predicates (events or
states) defined in this dimension to produce a fact. We then
randomly filled the non-temporal arguments of the fact with
an entity of its required type or with an existential quantifier.
Finally, we randomly selected a date between 1970 and 2015
to be associated with the fact. From these 100 grounded
facts, we then manually selected 15 to 30 in such a way as to
ensure the logical consistency of the resultant KB (e.g., an
entity cannot EXIST before it was CREATED). This process
was then repeated iteratively for each added dimension, re-
sulting in a dataset of 244 atoms covering 60 state types, 61
event types, and 18,235 derived PSL rules - about 150 rules
per predicate.

We have used this dataset in two experiments to track the
growth in the size of the database and in the time spent in in-
ference as a function of the number of input facts. The first
was an iterative experiment where, for each iteration, we ap-
pend input facts for a single new stative dimension, perform
inference, and analyze the size and efficiency characteristics
of the iteration. This experiment measures the growth in la-
tency as problem complexity increases and is summarized in
Table 3.

For our second scalability experiment, we made use of the
all 13 stative dimensions but randomly sampled only a sub-
set of the individual input facts from the synthetic dataset.

7These dimensions were selected to be representative of phys-
ical, mental, and social constructs that can be used for inference
over open-domain data.



Domain States Events Transitions Entailments Rules Entities Input Atoms Output Atoms (k) Grounded Rules (k) Time
1 dimension 3 2 4 2 572 16 21 6.6 27.6 9s

5 dimensions 18 17 41 10 4,816 38 117 715 2,808 11m36s
9 dimensions 45 41 95 42 11,236 60 212 4,615 16,351 1h27m

13 dimensions 60 61 134 58 18,235 73 244 8,107 28,052 2h46m

Table 3: Scalability results when adding additional complexity.

Input Atoms (IA) Entities Output Atoms (k) Grounded Rules (k) Time Output Atoms/IA Grounded Rules/IA Time/IA
10% 26 24 332 1,446 3m16s 12,769/fact 55,615/fact 7.5s/fact
25% 66 43 1,143 4,773 11m44s 17,318/fact 72,318/fact 10.7s/fact
50% 133 63 3,019 11,916 41m6s 22,6997/fact 89,593/fact 18.5s/fact
75% 200 69 5,423 20,537 1h24m 27,115/fact 102,685/fact 25.2s/fact

100% 244 73 8,107 28,052 2h46m 33,225/fact 114,967/fact 40.8s/fact

Table 4: Scalability experiment adding input facts with complexity (i.e., number of stative dimensions) held constant.

We sampled the dataset from 10% to 100% of its total size to
determine the impact of increasing size (but not complexity)
on PSL-based inference. This experiment closely resembles
a natural increase in facts over the life span of a knowledge
base and is summarized in Table 4.

Discussion
Altogether, the results of these experiments substantiate our
novel approach towards using PSL to jointly model the evo-
lution of state information across time at a small scale. How-
ever, when scaling up to real-world datasets, we show that
time does not increase linearly with the number of input
facts and so additional steps must be taken to improve ef-
ficiency.

Through analysis of the atoms and grounded rules in the
database, it was found that BETWEEN predicates (with two
time parameters) represent a significant percentage of the to-
tal size, and so linear increases in the number of distinct time
parameters result in quadratic increases in inference latency.
Moving forward, we plan to remove these fact types from
the PSL-based inference components in favor of deriving
such knowledge offline after an initial inference stage. Like-
wise, we propose in future work to explore the possibility of
employing an initial “light-weight” inference module which
greedily applies precondition, effect, entailment, and other
inference across time. We will then only apply PSL when
initial inference detects a potential contradiction or ambi-
guity which needs to be resolved through joint reasoning.
Finally, inference in the PSL module will be tightly con-
strained by additional canopies, such that all facts and only
those facts associated with a given entity (or entity pair) will
be linked in any sequence of grounded rules.

Acknowledgments
This research is supported by the Defense Threat Reduction
Agency (DTRA) contract number HDTRA1-17-C-0056.
The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding
any copyright annotation thereon. Disclaimer: The views
and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or im-
plied, of DTRA, DoD, or the U.S. Government.

References
Bach, S.; Broecheler, M.; Getoor, L.; and O’leary, D. 2012. Scaling
MPE inference for constrained continuous markov random fields
with consensus optimization. In NIPS, 2654–2662.
Bach, S. H.; Broecheler, M.; Huang, B.; and Getoor, L. 2015.
Hinge-loss markov random fields and probabilistic soft logic. arXiv
preprint arXiv:1505.04406.
Beltagy, I.; Erk, K.; and Mooney, R. J. 2014. Probabilistic soft
logic for semantic textual similarity. In ACL (1), 1210–1219.
Chekol, M. W.; Pirrò, G.; Schoenfisch, J.; and Stuckenschmidt, H.
2017. Marrying uncertainty and time in knowledge graphs. In
AAAI, 88–94.
Fikes, R. E., and Nilsson, N. J. 1971. Strips: A new approach to
the application of theorem proving to problem solving. Artificial
intelligence 2(3-4):189–208.
Frances, G., and Geffner, H. 2015. Modeling and computation in
planning: Better heuristics from more expressive languages. In Int.
Conf. on Automated Planning and Scheduling.
Liu, H., and Singh, P. 2004. ConceptNeta practical commonsense
reasoning tool-kit. BT technology journal 22(4):211–226.
McCallum, A.; Nigam, K.; and Ungar, L. H. 2000. Efficient clus-
tering of high-dimensional data sets with application to reference
matching. In Proc. of ACM SIGKDD conference on Knowledge
discovery and data mining, 169–178. ACM.
McCluskey, T. L.; Vaquero, T. S.; and Vallati, M. 2017. Engi-
neering knowledge for automated planning: Towards a notion of
quality. In Proc. of the Knowledge Capture Conference, 14. ACM.
Mishra, B. D.; Huang, L.; Tandon, N.; Yih, W.-t.; and Clark, P.
2018. Tracking state changes in procedural text: a challenge dataset
and models for process paragraph comprehension. arXiv preprint
arXiv:1805.06975.
Ostermann, S.; Roth, M.; Modi, A.; Thater, S.; and Pinkal, M.
2018. Semeval-2018 Task 11: Machine comprehension using com-
monsense knowledge. In Proc. of SEMEVAL Workshop, 747–757.
Shanahan, M. 1999. The event calculus explained. In Artificial
intelligence today. Springer. 409–430.
Sridhar, D., and Getoor, L. 2016. Joint probabilistic inference of
causal structure. In Proc. of ACM SIGKDD, Workshop on Causal
Discovery.
Yang, F.; Yang, Z.; and Cohen, W. W. 2017. Differentiable learning
of logical rules for knowledge base completion. arXiv preprint
arXiv:1702.08367.


