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Abstract. In this work, we describe a supervised cross-lingual methodology
for detecting novel and conventionalized metaphors that derives generalized se-
mantic patterns from a collection of metaphor annotations. For this purpose,
we model each metaphor annotation as an abstract tuple – (source, target, rela-
tion, metaphoricity) – that packages a metaphoricity judgement with a relational
grounding of the source and target lexical units in text. From these annotations,
we derive a set of semantic patterns using a three-step process. First, we em-
ploy several generalized representations of the target using a variety of WordNet
information and representative domain terms. Then, we generalize relations us-
ing a rule-based, pseudo-semantic role labeling. Finally, we generalize the source
by partitioning a semantic hierarchy (defined by the target and the relation) into
metaphoric and non-metaphoric regions so as to optimally account for the ev-
idence in the annotated data. Experiments show that by varying the generality
of the source, target, and relation representations in our derived patterns, we are
able to significantly extend the impact of our annotations, detecting metaphors in
a variety of domains at an F-measure of between 0.88 and 0.92 for English, Span-
ish, Russian, and Farsi. This generalization process both enhances our ability to
jointly detect novel and conventionalized metaphors and enables us to transfer
the knowledge encoded in metaphoricity annotations to novel languages.

Keywords: Metaphor Detection, Generalization, Semantic Modeling, WordNet,
Transfer Learning

1 Introduction

Metaphor is the air we breathe. It stirs the emotions, arouses the senses, and serves as a
vehicle for describing and reasoning about difficult concepts – all while using language
that is both clear and familiar. Metaphor is everywhere in human language, hiding in
plain sight. For this reason, it is crucial for technologies that seek to model and under-
stand human language to be capable of correctly identifying and interpreting metaphor.
Indeed, metaphor has been found to confound both statistical and knowledge-based
techniques for natural language processing across a wide variety of applications in-
cluding textual entailment, text summarization, word sense disambiguation, semantic
textual similarity, question answering, and event extraction. In this work, we propose a
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methodology that derives generalized semantic patterns from existing metaphor anno-
tations in order to detect a wide variety of metaphoric language as either a stand-alone
system or as a component in a larger supervised or unsupervised metaphor detection
system.

Although there have been many influential theories regarding the cognitive basis of
metaphor, the most prominent is Lakoff’s Contemporary Theory of Metaphor[13, 11],
which popularized the idea of a conceptual metaphor mapping. Within the cognitive
framework of a given conceptual mapping, terms pertaining to one concept (the source)
can be used figuratively to express some aspect of another concept (the target). For
example, the conceptual metaphor “Life is a Journey” indicates a cognitive lens through
which the target concept “life” may be more easily discussed and understood. This
particular mapping allows us to speak of one being stuck in a “dead-end” job, of a
crucial decision as being a “fork in the road”, and of someone’s life “taking a wrong
turn”.

Existing work on the identification of metaphor can be broadly categorized as ei-
ther feature-based or example-based. Feature-based metaphor identification is based
upon the assumption that metaphoric usages in context typically have certain charac-
teristics that serve as cues for indicating non-literal usage. Such characteristic indica-
tors of non-literal usage include the pairing of abstract with concrete terms[28, 4, 3,
27], the violation of selectional preference[7, 19, 10, 29], dissonance between a term
and its greater context[26, 1, 25], explicit linguistic cues[16], and semantic unrelated-
ness between terms[22, 5]. In general, such methods are successful at detecting novel
metaphors, but have difficulty in detecting commonly used figurative language or “con-
ventionalized metaphors” for which modeling selectional preference, contextual relat-
edness, and semantic mismatch is more complex.

Example-based methods seek to detect metaphor by comparing candidate texts to a
set of known metaphors using abstraction hierarchies[18], known conceptual metaphor
domain interactions[21], semantic signatures[20], models of metaphoricity priors[24],
probabilistic typicality hierarchies[15], or simply large lexical stores of conventional-
ized metaphor[14]. Of course, methods that compare candidates to known metaphors
are able to reliably detect those that are most commonly used, but they require some
additional framework to generalize from these examples to less common or even novel
metaphoric utterances.

We propose an approach to metaphor identification that follows the example-based
paradigm but differs from existing work in that we (1) explicitly explore a variety of
methods for generalization; (2) determine the impact that such methods have on overall
metaphor identification performance; and (3) apply these examples cross-lingually to
maximize performance in novel languages. In particular, we generalize our annotations,
which consist of the tuple (source, target, relation, metaphoricity), in three ways:

1. We generalize target lexemes using semantic categories and a domain-level group-
ings of terms and exploit the dichotomy between abstract and concrete nouns;

2. We generalize source/target relations in text by converting dependency relations
into broader pseudo-semantic relations using a rule-based approach;

3. We generalize source lexemes by exploiting the hypernymy links in a semantic
hierarchy (i.e., WordNet).
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For each generalized target/relation pair, we map the associated source lexemes
from our annotations onto the semantic hierarchy. In particular, we make use of a large-
scale, multi-lingual semantic knowledge base (i.e., a multilingual WordNet) that com-
bines groupings of related objects (i.e., synsets and semantic categories) with a hier-
archical tree structure (i.e., hypernymy relations). For a given target/relation pair, we
then define a semantic pattern as a single node in this hierarchy with an associated
metaphoricity judgement which indicates that that node, and all of its descendents in
the hierarchy, are or are not metaphors unless they are under the influence of a dif-
ferent pattern node. In other words, the metaphoricity judgement of each node in the
hierarchy is determined by the metaphoricity associated with the pattern node that is
its nearest ancestor. The set of pattern nodes is selected using a dynamic programming
algorithm to optimally select (and assign judgements to) a minimal set of nodes in the
hierarchy so as to account for all of the annotation evidence. In effect, we are using
a multilingual knowledge base to generalize from the given examples (of both literal
and metaphoric usages) so as to partition the semantic space that it defines into regions
of likely metaphoricity and regions of unlikely metaphoricity. By generalizing in this
way, we are able to transfer knowledge of metaphor to languages with no metaphor
annotations.

The remainder of this work is organized as follows. In Section 2, we survey related
work in metaphor identification. Then, in Section 3, we describe the two components
of our system – generalizing through the knowledge base to produce a set of semantic
patterns and using the resulting patterns to detect metaphor in unseen data. Section 4
describes the provenance and the characteristics of the multilingual datasets we use to
train and evaluate our system. In Section 5 we present our experiments and discuss our
results. Finally, we share the insights gained from these experiments in Section 6 and
offer our recommendations for moving forward.

2 Related Work

One of the earliest works in example-based metaphor processing is that of Martin[17],
who sought to enable an automated Unix help client (uc) to detect and interpret con-
ventional metaphor. This system had as its backing an abstraction hierarchy which was
used to enable the interpretation components of the system to generalize. In particular, it
would attempt to apply manually-coded interpretations associated with a particular type
of metaphor, and then, if it failed, would move away from the original metaphor to more
and more abstract representations until the metaphor could be understood. Originally,
the system was backed by only twenty-two core metaphors (with interpretations), but
these were further expanded to 200 as part of the Berkeley Master Metaphor List[12].
In many ways, we follow the intuitions of this work on a much larger scale, using a
wide variety of metaphoricity annotations across multiple unrelated domains in multi-
ple languages.

Krishnakumaran and Zhu[10] introduced a key observation – that metaphors can be
categorized according to their relationship to some non-metaphoric unit in the text and
that the characteristics that indicate metaphoricity differ by category. They proposed
three types of metaphors – IS-A metaphors (Type I), verb-noun metaphors (Type II),
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and adj-noun metaphors (Type III). In order to detect these three types of metaphors,
they made extensive use of the WordNet hypernym structure (to rule out literal IS-A
relations) and a verb-adj/noun co-occurrence matrix (to rule out common pairings). In
effect, they employed co-occurrence information to partition the knowledge base into
regions of conventional usage versus unconventional usage which is, arguably, an ap-
proximation of (novel) metaphorical usage. More recently, Li et al.[15] built upon this
idea by combining extracted figurative comparisons with a probabilistic IS-A knowl-
edge base (ProBase) to partition the semantic space associated with particular depen-
dency relations in a much more principled way.

Likewise, Hovy et al.[9] focused on the semantic relation between pairs of words
in a text by building a tree-kernel classifier that uses (1) a vector representation of in-
dividual words and (2) several tree representations of the word. These representations
included lemmatized versions of the words, POS tags of the words, and WordNet se-
mantic classes (i.e., lexicographer files). This work represents a clear attempt to gener-
alize from the surface form of the words in their training data. However, by using the
full parse tree instead of a relation between the source and target, their methodology
was particularly vulnerable to data sparsity.

Similar to our approach in rationale, if not methodology, is Mohler et al.[20], which
compared sentence-level utterances against a large collection of sentences validated
as either containing metaphors or not. In particular, they sought to compare sentences
within a semantic space (defined by a WordNet- and Wikipedia-based “semantic signa-
ture”). While this approach successfully addressed the semantics of metaphor, it did not
consider the relationship between the source and the target within a sentence. As such,
it was heavily impacted by noise associated with the wider context of the sentence.

At the forefront of large-scale, example-based metaphor detection is the work of
Levin et al.[14], who have produced a resource containing common metaphors asso-
ciated with a variety of target concepts in English, Spanish, Russian, and Farsi. Mov-
ing beyond the relational categories of Krishnakumaran and Zhu[10], they predicted
metaphoricity between lexical pairs in a variety of dependency relations: subj-verb,
obj-verb, adv-verb, adj-noun, noun-pred, noun-noun, noun-poss, and noun-prep-noun.
The most common terms that co-occur with a target term (e.g., “poverty”, “wealth”,
“taxation”) were manually analyzed and annotated as being either conventionalized
metaphors or literal language. However, other than normalizing for conjunctions and
several semantically “light” nouns (e.g., containers, quantifiers, partitives), no general-
ization was carried out. Without employing generalization, it is not possible to detect
novel metaphors using a resource such as theirs.

3 Methodology

We propose a supervised approach to the identification of metaphor which seeks to
generalize over an existing dataset annotated for metaphoricity. We model each anno-
tation (without contextual information) using the abstract tuple – (source, target, rela-
tion, metaphoricity). It is our hypothesis that the vast majority of utterances in text,
represented as such a tuple, are either consistently metaphoric or consistently non-
metaphoric, with the wider context of the utterance having little to no effect on this
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property.1 Building on this hypothesis, we assert that a model of the prior metaphori-
cal likelihood of all possible utterances – that is, all possible source/target pairs in all
dependency relations2 – represents a complete solution to the metaphoricity problem.
We seek to approximate this level of knowledge by deriving and using semantic pat-
terns that are capable of grouping the metaphoricity decisions of individual examples
and applying them to a bounded region of this tuple space. These decisions can then
be propagated to utterances in larger and more general regions without the need for
humans to annotate such (potentially novel) utterances directly.

While this approach was developed as a supplement to an existing feature-based
metaphor identification system[3], we have also made use of it as a stand-alone system,
and we employ it as such throughout this work. Our approach consists of two stages
– (1) generalizing our annotations into semantic patterns using a three-step process;
and (2) using these semantic patterns to detect linguistic metaphors in unseen data. In
this section, we describe these two components with a particular focus on our distinct
techniques for individually generalizing the target, the relation, and the source. We then
describe our method for combining the results yielded by these patterns to arrive at a
single decision for a given input.

3.1 Generalizing Over Existing Annotations

In order to effectively generalize from our metaphoricity annotations, we first individ-
ually generalize the target and the relation. For the target, we make use of a variety
of semantic information associated with its representation in WordNet including (1) its
associated synset, (2) its semantic category, and (3) whether it can be considered “con-
crete” or “abstract”. In addition, we generalize the target using a manual grouping of
terms related to a small set of target domains. The domains under consideration – GOV-
ERNMENT, BUREAUCRACY, DEMOCRACY, ELECTIONS, POVERTY, WEALTH,
and TAXATION – were selected to represent a variety of distinct domains with differ-
ent characteristics.3 Relations are generalized using a rule-based, pseudo-semantic role
labeling process which maps from dependency chains to a small set of abstract semantic
relations.

For each target/relation representation pair, we define a WordNet semantic hierar-
chy upon which we can map individual source lexemes, along with their metaphoricity
annotations. Once these annotations have been linked to WordNet, it is possible to be-
gin the process of deriving semantic patterns. We define a semantic pattern according
to the tuple, (g(S,x), T , R, m), where T corresponds to some representation of the

1 That said, we acknowledge several classes of utterances such as ”Cholera is a disease of
poverty”; ”Men are animals”; and ”The rock began to sing (in a dream)” for which this hy-
pothesis is insufficient. However, we believe that the appropriate means for handling such
cases is to determine a metaphoric or non-metaphoric prior likelihood for the utterance and to
overcome this prior in anomalous cases using supplementary, context-dependent components
tailored to such cases.

2 This is defined by the set of tuples (SV , TV , RN , m ∈[0..1]) where V is the vocabulary size
and N is the number of possible syntactic relations between two words within a sentence.

3 These domains correspond to those under consideration as part of the IARPA Metaphor pro-
gram.
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target lexeme, R corresponds to some representation of the relation between a source
and target within a text, m corresponds to a binary metaphoricity decision (metaphor
or non-metaphor), and the function g(S,x) defines a group within the semantic space S
(such as all nodes in a subtree) that contains the annotated source x. In the sections to
follow, we will describe several techniques for representing T and R at various levels
of generality along with our methodology for partitioning the semantic space S (for a
given T , R) into regions within which we assert that m must be either always true or
always false.

Generalizing Targets In addition to the lexical (surface form) representation of a tar-
get, TLEX , we propose four alternative representations. First, we link the target lexeme
to the WordNet synset that corresponds to its most frequent sense4 – TSY N . This en-
ables us to directly propagate metaphoricity annotations to all synonyms of a given term.
More importantly, this allows us to propagate annotations to synonyms cross-lingually
using the cross-lingual links (within a synset) associated with our multi-lingual version
of WordNet.

Next, we represent a given target using the WordNet semantic category (i.e., lexi-
cographer file) associated with its most frequent sense – TSEM . This permits us to infer
the metaphoricity of the tuple (devours, NOUN.STATE, dobj) from the annotated ex-
ample (devours, poverty, dobj). This is because the semantic category NOUN.STATE
includes additional target lexemes “health”, “silence”, “guilt”, and “comfort” – none of
which is literally capable of “devouring”.

Third, we partition the noun hierarchy of WordNet into an abstract-concrete di-
chotomy – TABS – which indicates whether the synset PHYSICAL ENTITY is or is not
a direct or indirect hypernym of the target. While this generalizes the targets in a very
coarse way, a significant number of physical interaction verbs (e.g., “drop”, “carry”,
“throw”, “touch”, “eat”) will be metaphoric for all abstract nouns.

Finally, we represent the target according to the domain or topic with which it is
associated – TDOM . For our purposes, this corresponds to a manually-created list of
lexical items, each related to one of the seven domains mentioned above and separated
according to part-of-speech. This permits us to group together such target lexemes as
“taxes”, “taxation”, and “income tax”.

3.2 Generalizing Relations

For representing the relation, R, which links the source and the target in text, we explore
two possibilities. First, we use the dependency relation (as determined by MaltParser)
between the source and the target directly – RDEP . This relation is then post-processed
to remove conjunction relations (“conj”), so that both “government” and “bureaucracy”
in the phrase “government and bureaucracy punish us” will have the same subject rela-
tion to the verb “punish”.

In order to better promote generalization, we also represent the relation, R, by trans-
forming it into a language-independent, pseudo-semantic relation – RSEM – derived

4 This was determined to be sufficient for the limited number of target lexemes that we consider,
but will need to be reconsidered moving forward.
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Metaphoric Candidate LM Sources Non-Metaphoric Candidate LM Sources
Maze Monster Fiefdoms Process Management Inconsistencies

Nightmare Sorcery System Control Activity Administration
Hell Basement Perdition Adjudication Tenure Occupation

Table 1. Candidate LM sources – categorized according to metaphoricity – for “bureaucratic
[SOURCE]” given the adjective-noun dependency relation (amod).

using a small number of manually-crafted rules over raw dependency relations. For our
purposes, we define a small set of pseudo-semantic relations – AGENCY, PATIENCY,
and MODIFICATION5 between the source and target. As an example, each of the fol-
lowing phrases associates the target (“wealth”) as an AGENT to some form of the
source verb “enslave”: “wealth enslaves people” (nsubj), “wealth continues to enslave
people”(nsubj+xcomp−1), “wealth which enslaves people” (rcmod−1), “causes wealth
to enslave people” (infmod−1), “for wealth to enslave people” (prep for+infmod−1),
and “chained to my enslaving wealth” (amod−1). Because in each of these cases “wealth”
is metaphorically “enslaving” someone, we avoid sparsity (and improve coverage) by
propagating our annotations to all of these relations through this generalization step. We
define equivalent rules to transform raw dependency relations to these three pseudo-
semantic relations for each of our four languages.6 Since these pseudo-semantic re-
lations are consistent across languages, their use enables us to propagate annotations
across languages by pairing these relations with any of the language independent tar-
get representations (i.e., TSY N , TABS , TSEM , or TDOM ) and deriving cross-lingual
semantic patterns for the pair’s associated hierarchy.

Generalizing Sources Throughout the Knowledge Base Once we have defined a tar-
get/relation pair, we begin the process of generalizing our source lexemes and deriving
semantic patterns. Table 1 shows a variety of source lexical items taken from our anno-
tations that share an “amod−1” relation with the target lexeme “bureaucratic”7 Before
generalizing, we must first link each of these annotated source lexemes into a semantic
knowledge base, such as WordNet[8]. WordNet represents an ideal knowledge base for
our purposes due to its ability to simultaneously group individual senses (i.e., synsets
and semantic categories) and to define a hierarchical structure within groups using hy-
pernymy relations. However, the problem of word sense ambiguity makes it non-trivial
to link individual lexical items to particular synsets. This is even more problematic when
the lexical items to be linked are being used in non-literal ways. To account for this, we
perform a light disambiguation step that filters out potential senses whose annotated

5 We are concerned here with adjectival modifiers only.
6 While these rule-based groupings do not approach the accuracy of state-of-the-art semantic

role labeling (SRL) systems (at least in English), we believe that their quality is sufficient for
the task of metaphor identification. The use of move advanced SRL technologies for this task
remains an open problem.

7 These are organized as “metaphoric” or “non-metaphoric” according to the predominant
metaphoricity judgement in our annotations.
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Fig. 1. Categorizing nodes in the source semantic hierarchy based upon the annotated source
lexemes from Table 1.

metaphoricity neighborhood (in the semantic hierarchy) fails to match the metaphoric-
ity of the annotation. For example, the lexeme “Hell” can be linked to either a synset
that contains the word “Perdition” or a synset with a hypernym of “Mischief”. Given the
existence of an annotation for “Perdition” with the same metaphoricity, the first synset
is preferred. After limiting the number of potential word-sense mappings in this way8,
annotated source terms are linked to all remaining senses.

After each annotation has been linked to one or more nodes in the source semantic
hierarchy, metaphoricity decisions are propagated to the nodes themselves. Each node
in the hierarchy is categorized as one of the following:

1. definitely non-metaphoric – if the annotations for a particular node are entirely
negative;

2. definitely metaphoric – if the annotations for the node are at least partially posi-
tive;

3. likely non-metaphoric – if there are no direct annotations, but all of the node’s
direct or indirect ancestors or descendants are known to be non-metaphoric;

4. likely metaphoric – if there are no direct annotations, but all of the node’s direct
or indirect ancestors or descendants are known to be metaphoric;

5. possibly metaphoric – if there is no indication at all among the existing annotations
(or if the results are mixed).

The associated categorization of each node in a simplified source hierarchy (based on
the annotations from Table 1) is shown in Figure 1.

At this point, we must define our semantic patterns by selecting a set of nodes
in the source hierarchy (and assign a metaphoricity judgement to each) such that the
metaphoricity judgement associated with each node’s closest pattern-node ancestor will
determine whether it is likely to be metaphoric or not. We constrain our pattern selection

8 Further details omitted, due to space.
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process such that it is constrained to correctly categorize all “definitely metaphoric” and
“definitely non-metaphoric” nodes (i.e., those representing the annotations themselves).
The remaining categories (“likely metaphoric”, “possibly metaphoric”, and “likely non-
metaphoric”) represent a continuum along which the system can increase recall at the
expense of precision. For tasks that require a higher recall, the system can be further
constrained to select, for instance, “likely metaphoric” nodes as metaphors as well.
Any nodes in groups that have not been constrained in this way may be dominated by
patterns suggesting metaphoricity or non-metaphoricity or they may be dominated by
no pattern at all.

In order to encourage generalization throughout the source hierarchy, we wish to
select a minimal set of patterns nodes that satisfy our constraints. These nodes can be
selected efficiently using a straightforward, tree-based dynamic programming method-
ology in which the state space is defined by two dimensions: (1) the current node, N ,
and (2) the current metaphoricity judgment, m, defined by the pattern that dominates it
(i.e., the nearest pattern node on its ancestor chain). If the system has been constrained
to judge the current node as metaphoric or non-metaphoric (as described above), some
semantic pattern must be correctly applied to this node – either the pattern that cur-
rently dominates the node, or a new pattern defined on the node itself. Otherwise, if
the current node is under no constraints, we are free to assign a metaphoricity pattern
or a non-metaphoricity pattern to the node or to add no pattern and allow any ancestor
pattern in effect to continue dominating the hierarchy. This process is described more
formally by the following equations9 where r(N) represents the required constraints on
node N – i.e., “metaphor” (met), “non-metaphor” (lit), “unconstrained” (unc) – and Nc

represents a direct descendant of N in the source semantic hierarchy:

f(N,m) =

 min
x∈h(m)

g(N,m, x) if r(N) = unc

g(N,m, r(N))
(1)

g(N,m, x) =


∑
c
f(Nc, x) if m = x

1 +
∑
c
f(Nc, x)

(2)

h(m) =

{
{met, lit, unc} if m = unc

{met, lit}
(3)

The count of the minimal number of patterns can be computed by summing the re-
sults of f(NR, “unc”) for each root node, NR, in the hierarchy. Once these counts have
been computed over the state space, selecting the nodes that lead to this optimal state
can be accomplished by greedily traversing the state space along locally optimal paths.
Note that the result of this process is a partitioning of the entire semantic space of

9 In effect, h(m) is the set of potential pattern decisions that can be selected based on the an-
cestor patterns; g(N,m, x) is the number of new patterns required to change the current node
N , from m to x, and to correctly cover all descendants; and f(N,m) is the number of new
patterns required to cover the current node, N , and all of its descendants given the ancestor
pattern m.
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the source hierarchy into metaphoric, non-metaphoric, and unclear regions for a given
target/relation pair. Once a set of pattern nodes has been selected that satisfies our con-
straints, they can be used either as a stand-alone, semantics-only metaphor detection
system or in conjunction with an existing metaphor detection system.

3.3 Detection of Metaphors in Unseen Text

Employing these patterns in a stand-alone metaphor detection system requires two
things: (1) a strategy for selecting potential source/target pairs in text and (2) an algo-
rithm for combining the metaphoricity decisions associated with multiple target/relation
representations. For the first of these, we begin with a list of lexical items that have been
manually associated with our seven target domains. These have been supplemented us-
ing word senses gathered from target domain signatures for each domain in the manner
of Bracewell et al.[2]. For each target term selected, we consider all content words in
the same sentence as potential sources.10

Once the source/target pairs have been extracted from a text, they are converted
into (source, target, relation) tuples – for each target/relation representation – and com-
pared against the patterns derived in Section 3.1. We then treat our patterns as a cas-
cade, analyzing groups in increasing order of abstractness of the target representation –
TLEX , TSY N , TSEM , TDOM , TABS . Within each group, we compare the two relation
representations – RDEP and RSEM – which can either provide the same metaphoricity
judgement, different metaphoricity judgments, or indicate that there is no clear decision.
If they agree (or if only one provides a clear answer), then that metaphoricity decision
is assigned to the pair. If they disagree (or cannot provide an answer), the next group is
considered. If none of the groups in the cascade results in a response, the metaphoricity
of the pair remains unclear and is reported as such. This represents a cascading structure
from specific to more general representations of the target and relation.

4 Datasets

In order to evaluate our methodology for generalizing over metaphor annotations, we
make use of four datasets (in four languages – English, Spanish, Russian, and Farsi)
developed by a team of annotators with native-level proficiency. The size and charac-
teristics of each dataset are summarized in Table 2. The first dataset (ANN) consists
of examples selected by the annotators using targeted web searches for representa-
tive (non-conventionalized) metaphors for particular pairs of source and target concepts
that were of interest at the program level. While this dataset is a good source of novel
metaphors in a variety of source and target domains, it includes only a single annotation
(with source and target) for the full sentence and does not include any non-metaphor
annotations.

The second dataset (REC) was developed to address this problem by providing a
more natural source of data for training the machine learning component of our overall
10 We additionally collapse hyphenated terms and collocations when selecting both the source

and the target. For collocations and hyphenated terms that contain a target term, we produce a
sub-collocate candidate pair – e.g., (stricken, poverty, dep) for “poverty-stricken”.
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Language Dataset Metaphors
Non-

Unclear Language Dataset Metaphors
Non-

Unclear
Metaphors Metaphors

EN

ANN 8,667 0 125

ES

ANN 4,308 0 353
REC 402 25,238 340 REC 223 43,241 1,213
EVAL 284 7,130 177 EVAL 177 15,533 400
SYS 8,507 29,563 6,562 SYS 7,053 28,782 8,633
TOTAL 17,860 61,931 7,204 TOTAL 11,761 87,556 10,599
REDUCED 5,512 7,080 2,683 REDUCED 5,158 10,946 4,745

RU

ANN 3,436 0 322

FA

ANN 2,229 0 168
REC 1,204 29,225 758 REC 367 51,884 188
EVAL 341 5,538 321 EVAL 186 21,081 222
SYS 5,823 14,664 2,834 SYS 7,883 27,186 6,369
TOTAL 10,804 49,427 4,235 TOTAL 10,665 100,151 6,947
REDUCED 6,261 8,548 2,215 REDUCED 242 2,453 82

Table 2. Datasets used in our experiments with size and balance information. The REDUCED
set corresponds to the subset of the combined dataset that can be represented using a pseudo-
semantic relation representation as described in Section 3.2.

system with a significant number of non-metaphor annotations. Individual documents
were selected automatically to be annotated thoroughly. For these documents, annota-
tors were provided with all source/target pairs that had been selected as described in
Section 3.3. This is the most ’natural’ of our four datasets. The third (EVAL) was an-
notated in the same way by our annotators, but was provided by a third party for the
purpose of evaluating our system’s ability to detect metaphors in unseen data. As such,
it has a slight bias towards metaphoricity.

Our final and largest dataset (SYS) consists of a validated subset of the output from
both our machine learning-based detection system and earlier versions of the stand-
alone semantic generalization component described which is the focus of this work.
Our full dataset consists of vastly more examples that have not been validated. Those
that have been validated were selected using an ad hoc active learning setting that con-
sidered a variety of characteristics – including similarity to existing annotations, tar-
get/source diversity, relation diversity, system confidence, and disagreement between
the ML system and the semantic generalization components.

The datasets labeled “REDUCED” in Table 2 represent a subset of the combined
dataset (all four of the above) which consists of those only instances that can be rep-
resented using a pseudo-semantic relation – i.e., metaphors (or literal utterances) with
subj-pred, obj-pred, or adj-noun relations. Only this subset can be used and tested cross-
lingually.

For each dataset, annotators were asked to judge metaphoricity according to crite-
ria comparable to the MIP annotation guidelines[23]. Following the insights of Dunn
[6], we have instructed the annotators to employ a four-point metaphoricity scale cor-
responding to: (0) no metaphoricity, (1) possible (or weak) metaphoricity, (2) likely
(or conventionalized) metaphoricity, or (3) clear metaphoricity. In some cases, multiple
annotators provided scores for individual instances, and so we use the average score
across all annotators. Using these averages, we categorize each annotated instance as
“metaphoric” (score≥1.5), “non-metaphoric” (score<0.5), or “unclear” (0.5<score≤1.5).
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Target/Relation ENGLISH SPANISH RUSSIAN FARSI Target/Relation ENGLISH SPANISH RUSSIAN FARSI
CASCADING 0.92 0.90/0.91 0.88 0.86/0.87 BASELINE 0.73 0.76 0.53 0.78/0.79
TLEX , RDEP 0.91 0.90/0.91 0.87 0.85/0.86 TLEX , RSEM 0.89/0.90 0.90/0.91 0.87/0.88 0.62
TDOM , RDEP 0.86/0.87 0.87/0.88 0.82/0.83 0.82/0.83 TDOM , RSEM 0.84/0.85 0.87/0.88 0.82 0.60/0.61
TSY N , RDEP 0.87 0.86 0.82 0.80/0.81 TSY N , RSEM 0.86 0.87/0.88 0.81 0.56
TSEM , RDEP 0.83/0.84 0.75/0.76 0.71 0.78/0.79 TSEM , RSEM 0.79 0.67/0.68 0.65/0.66 0.52
TABS , RDEP 0.82/0.83 0.74/0.75 0.54 0.75/0.77 TABS , RSEM 0.78/0.79 0.65/0.66 0.47/0.48 0.51/0.52

Table 3. Experiments showing the performance of each target/relation representation alongside
the combined “cascade” and a lexical baseline. This represents a 10-fold cross-validation over the
combined dataset for a given language. For those using the RSEM , the REDUCED dataset it used.
The numbers reported above correspond to the F-measure for detecting metaphor. When there is
a range specified (low/high), it is due to the way that we are categorizing annotations marked
as “unclear”. On the low end, annotated examples labeled “unclear” are ignored entirely, while
on the high end, any “unclear” examples are labeled as “metaphor” by the system to improve
precision. Recall is unaffected by this distinction.

In deriving our semantic patterns (cf. Section 3), we have not made use of instances la-
beled “unclear”.

5 Experiments

In order to highlight the contributions of our approach to semantic generalization for
metaphor detection, we have carried out two experiments. First, we evaluate the per-
formance of the semantic patterns derived for individual target/relation representation
pairs as well as the performance of the full system in the cascading framework described
in Section 3.3. Then, we determine the extent to which annotations from one or more
languages can be applied to the task of metaphor identification in a separate language
for which no annotations are available.

5.1 Monolingual Generalization Experiments

In our first experiment, we test the ability of our semantic generalization component
(using each of the target/relation representations described in 3.1) to detect metaphors
in a monolingual setting. We compare each target/relation representation (used in iso-
lation) against both our cascading combination of patterns described in Section 3.3 and
a fully lexical baseline. This baseline consists of the following: for each example in the
test fold, we find an exact lexical match of the tuple (S, TLEX , RDEP ) – meaning the
hierarchy was not used – and then apply the most common metaphoricity decision from
our annotations. If no lexical matches are found, it is labeled as “unclear”.

We have performed our experiment over the combined datasets described in Section
4 using a 10-fold cross-validation – that is, for evaluation against each fold of the data,
we develop our semantic patterns over the remaining 9 folds. We report the results of
these experiments in Table 3.

The lexical baseline system predictably resulted in very high precision (> 95%)
with a comparatively low recall (appx. 50%). For each language, the cascading com-
bination system performed best, highlighting the advantage associated with our overall
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ENGLISH SPANISH RUSSIAN FARSI
RECALL 0.28 0.48 0.16 0.20
PRECISION 0.72/0.78 0.58/0.72 0.72/0.75 0.26/0.29
F-MEASURE 0.40/0.41 0.53/0.57 0.26 0.22/0.24

Table 4. Experiments in applying annotations from the other three languages to a given language
using cross-lingual target/relation representations.

methodology. Among the individual target/relation pairs, performance was compara-
ble (slightly better) using the raw dependency relation compared to using the pseudo-
semantic relations. For the target representation, the lexical (TLEX ) representation re-
sulted in the best performance followed by the manual domain-level term groupings
(TDOM ) and the synsets (TSY N ). The remaining representations – WordNet seman-
tic categories (TSEM ) and the abstract/concrete noun dichotomy (TABS) – resulted in
lower performance due to their coarseness, especially for verbs and adjectives.

5.2 Cross-Lingual Generalization Experiments

In our second experiment, we attempt to detect metaphors in the combined dataset
of one language using patterns developed from the datasets of the remaining three
languages. That is, we make use of no native-language annotations in determining
metaphoricity. In particular, these experiments make use of only the “REDUCED”
dataset from Section 4 for which we are able to convert each annotation’s source/target
relation into a cross-lingual, pseudo-semantic relation. All target representations (ex-
cept for the TLEX ) can be applied cross-lingually. The results of these experiments are
shown in Table 4.

For English, Spanish, and Russian, the precision of the resulting system at detecting
metaphor is above 70%, while recall for these three languages ranges from 16-48%.
We believe that this represents good out-of-the-box performance on a novel language
with no annotated data. For Farsi, on the other hand, precision is much poorer, but it is
difficult to draw conclusions, due to the small size of the “REDUCED” dataset in this
language.

6 Conclusion

In this work, we have presented a novel approach to the generalization of metaphoric-
ity annotations across a semantic hierarchy. We have clearly shown the advantage of
generalizing sources throughout this hierarchy with an F-measure above 0.85 for four
languages in 10-fold cross-validation experiments over a very large annotated dataset
of metaphoricity. This is compared to a purely lexical baseline with F-measure be-
tween 0.53-0.79 across all languages. In a monolingual setting, the benefits associated
with generalizing the targets across the semantic hierarchy are less clear. We theorize
that this can mostly be attributed to the restricted number of domains and target lexi-
cal items that are represented in our dataset and that this type of generalization would
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have a more significant effect when applied to novel domains. Likewise, the pseudo-
semantic relations we propose were not shown to outperform raw dependency relations
within our monolingual datasets.

However, we have shown that the pseudo-semantic relations are able to be applied
to the task of cross-lingual metaphor detection. For three of our languages, we were
able to detect metaphors with over 70% precision and a recall ranging from 16-48%.
This clearly shows the utility of our approach in tackling the task of metaphor detection
in novel languages with a minimal development cost.

In future work, we intend to apply our approach to semantic generalization to a
variety of novel domains to better explore the effect of target-level generalization. In
addition, we hope to supplement WordNet with additional pseudo-semantic categories
derived using the distributional similarity of terms for use in languages where there
is no corresponding version of WordNet or where its quality is poor. Finally, we plan
to analyze the performance of our semantic generalization component in an active (or
co-active) learning framework in combination with a feature-based metaphor detection
system.
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